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Abstract. Information obtained by a quantum measurement process performed on a physical
system and the entropy change of the measured physical system are considered in detail. Itis shown
that the condition for the amount of information obtained by the quantum measurement process
to be represented by the Shannon mutual entropy is that the intrinsic observable of the measured
physical system commutes with the operational observable defined by the quantum measurement
process. When some measurement outcome is obtained, the decrease of the Shannon entropy of
the measured system is compared with that of the von Neumann entropy. Furthermore, a condition
is established under which the amount of information that can be established by the quantum
measurement process becomes equal to the decrease of the Shannon entropy of the measured
physical system.

1. Introduction

Entropy is one of the most important quantities not only in thermodynamics and statistical
mechanics [1, 2] but also in information theory and statistics [3, 4]. In statistical physics, the
second law of thermodynamics and the irreversibility of dynamical processes are characterized
by the increase of entropy [5]. Inthermal equilibrium, the entropy of a physical system is given
by the celebrated Boltzmann formula which clarifies the relation between thermodynamic
entropy and probability. Letting; be the probability that the physical system is in it
microscopic state and letting/ be the total number of all possible microscopic states of the
physical system under some constraint; then the entropy of the physical system is given by the
formula, H(p) = — Zf"zl pjlog p;, where we set the Boltzmann constapt= 1. In this

paper, we use the logarithm with arbitrary base. When we use the natural logarithm, the entropy
is measured inatsand when the logarithm with base two is applied, the entropy is measured in
bits. The maximum value of the entropy becontg.x = max,,, H(p) = log W whichis the
Boltzmann formula. The thermal equilibrium state of the physical system is derived, according
to the entropy-maximum principle [6, 7]. The maximum value of the entropy is attained by
p; = 1/W forall j. This is equivalent to the principle of equalpriori probabilities for a
microcanonical ensemble in thermal equilibrium [1].

The relation between entropy and information was considered first by Szilard [8] to
investigate the Maxwell demon in a thermodynamic system. He showed that the information
gain by the measurement process performed on the thermodynamic system decreases the
entropy of the measured physical system. Of course, the total entropy of the measured physical
system and the measurement apparatus increases due to the second law of thermodynamics.
The significance of this work was pointed out by Brillouin [9]. The most important work
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that showed the clear relation between entropy and information was done by Shannon [10-12]
who introduced entropy, conditional entropy and mutual entropy called the Shannon entropies,
into communication theory. He showed that the average length of a code word representing
a symbol generated from a message source is lower bounded by the Shannon entropy of the
message source. Furthermore, he found that the information can be reliably transmitted through
a noisy communication channel if the information rate is less than the channel capacity which
is the maximum value of the mutual entropy of the communication channel. The former is
referred to as the source-coding theorem and the latter is called the channel-coding theorem.
The information provided by experiments was investigated based on Shannon information
theory by Lindley [13]. Other interesting works that consider the relations between entropy,
information and randomness (algorithmic complexity or Kolmogorov complexity) of physical
systems have been done by Zurek [14, 15] and Caves [16]. The quantum Maxwell demon has
also been investigated by Lloyd [17].

Quantum mechanical entropy was introduced by von Neumann [18] in the quantum theory
of measurement processes. The guantum mechanical erffgpy, called von Neumann
entropy, is given by the formula,(os) = —Trs(oslog ps), wherepg represents a statistical
operator which describes a quantum state of a physical system arafafids for the trace
operation over the Hilbert spagg of a physical system. When the physical systemis prepared
in a quantum statgs, an observableXs of the physical system, which has the eigenstate
[¥s(x)) with eigenvaluex, takes the value with probability Py (x) = (¥s(x)|os|¥s(x)).

Then the Shannon entropy of the observalilg in the quantum statgg is given by

H()?S) = — ZXEQX Px(x) log Px(x), whereQy is the spectral set of the observalile. In

some cases, this entropy is called the measurement entropy [19]. The Shannon entropyisnoless
than the von Neumann entropy, that§gps) < H(Xs), which is derived from the concavity

of the function f(x) = —xlogx [20]. It has recently been found that the von Neumann
entropy in quantum information theory [21, 22] plays the same role as Shannon entropy does
in classical information theory [3,4]. Quantum-source-coding theorem has proved that the
average number of quantum bits (two-level quantum systems) representing a pure quantum
state generated from a quantum message source is lower bounded by the von Neumann entropy
of the message source [23, 24]. Furthermore, quantum-channel-coding theorem has found that
the information can be reliably transmitted through a noisy quantum channel if the information
rate is less than the quantum channel capacity, sometimes called the Holevo bound [25-27].

In this paper, the information gain and the entropy change by a quantum measurement
process performed on a physical system will be considered in order to understand the
information-theoretical properties of quantum measurement processes. When some quantum
measurement is performed on a physical system, the quantum state of the measured physical
system inevitably changes due to the effects of the quantum measurement process. Any
quantum measurement process that does not disturb the quantum state of the measured physical
system gives us no information about the physical system. The state change of the measured
physical system induces the changes of the Shannon entropy and the von Neumann entropy.
Therefore, it is considered that there is a relation between the amount of information on the
physical system that can be obtained by the quantum measurement process and the entropy
change of the measured physical system that is caused by the quantum measurement process.
In particular, the condition for quantum measurement processes is investigated, under which
the amount of information about the physical system is equal to the decrease of the Shannon
entropy of the measured physical system. The information gain by the quantum measurement
process and the entropy change of the measured physical system are very important in quantum
information theory [21,22]. Although optimization of quantum measurement processes
such that the information gain is maximized or the error probability is minimized has been
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investigated in detail [28—33], the relation between information gain and entropy change has
rarely been considered in quantum information theory. The relation between information gain

and quantum state disturbance, however, plays an important role in quantum cryptography
[34-36] and in error corrections of quantum computation [37—41]. Thus, the results obtained

in this paper may have some relevance to quantum information theory.

This paperis organized asfollows. Insection 2, we briefly summarize the basic formulation
of quantum measurement processes [42—-46] in a convenient way for our purpose. The state-
reduction formula for the measured physical system and the probability distributions of the
observable of the physical system and the measurement outcome are given. In section 3,
we consider information about the physical system obtained by the quantum measurement
process and we obtain the condition under which the information gain can be represented by
the Shannon mutual entropy. In section 4, when we obtain the measurement outcome, we
compare the decrease of the Shannon entropy of the measured physical system with that of
von Neumann entropy in the quantum measurement process. In section 5, we investigate the
relation between information gain and entropy decrease and we obtain the condition under
which the amount of information obtained by the quantum measurement process becomes
equal to the decrease of the Shannon entropy of the measured physical system. In section 6, to
examine the general results obtained in sections 3-5, we consider the information gain and the
entropy change in the standard position measurement of the physical system and the photon
number measurement by means of a lossless beam splitter. In section 7, we summarize the
results obtained in this paper.

2. Quantum measurement processes and state reductions

In this section, we briefly review the state-reduction formula for a measured physical system
and the probability distribution of measurement outcomes [42—-46] and then we introduce the
Shannon and von Neumann entropies in quantum measurement processes. An oh§grvable
of a physical syster§ on which we perform a quantum measurement can be characterized by
a projection-valued measure (PVM) or a spectral mea$y(€ ) [31, 47] which is expressed

in the following form

A = [ duwsonwsmi= [ duids) &
xeEyx x€Ex

where|ys(x)) is an orthogonal eigenstate of the observabjeand Ey is an arbitrary subset

of the spectral se®y which represents the set of all possible values of the obserxableve

can formally writeXs(x) = 8 Xs(R2x)/su(x). The PVMXs(Ey) satisfies the relations

Xs(Ex) =0 X5(Qx) = Is 2

for any subsefy C Qy. Herels is an identity operator defined on the Hilbert spageof
the physical system. Furthermore the PVM satisfies the equalities

Xs(Ex)Xs(Fx) = Xs(Ex N Fx) ®)

forany disjoined subsefy, Fy C Qx. We will consider quantum measurement processes for
both continuous and discrete observables in a systematic way. When we investigate a quantum
measurement process for a discrete observable, weuget) d= > §(x — x;)dx in
equation (1) and we obtain the PVM of the discrete observable

Xs(Ex) = Y [WsCep) (Ws(x))l. 4)

x;€Ex

XjGQX



1646 M Ban

A function f(X5) of the observable is a Hermitian operator defined by

1 = [ duw f@sesol = [ duw e 6
xXeRy xXeRy

which satisfies the eigenvalue equatigfmf(s)ws(x)) = fx)|¥s(x)). If the function
f(x) is expanded asf(x) = Y, f,x", we obtain the equalityf(Xs) = Y, f, X%
The mathematically rigorous treatment of quantum measurement processes of continuous
observables was formulated by Ozawa [44]. The information and entropy for generalized
observables which cannot be represented by PVMs will be considered in the appendix.

Suppose that before we perform the quantum measurement, the physical system to be
measured is in a quantum state described by a statistical opgfatanich is a non-negative
and trace one operator defined on the Hilbert spageThen, the probability®s (Ey) that the
observableX s in the quantum statg’ takes some value belonging to the £gtis given by

PS(Ex) = Trs[Xs(Ex)p5] = / A () (Ys ()1 o [ W5 (x)) (6)

xeEyx
where T stands for the trace operation over the Hilbert spageof the physical system.
Here we introduce a probability function

P30 = (Ws)Ip s (x)) = Trs[Xs(x) ol @)
which is formally rewritten as

5P (2x) 5 Xs(2x)
PS(x) = — 2 = Trg| ——=2p53 |. 8

= T =T ©
It is easy to see that the probability functid®} (x) is equal to the probability itself for a
discrete observable and to the probability density for a continuous observable. In terms of
the probability functionP} (x), we define the Shannon entropy of the observahjeof the

physical system in the quantum stg{g by

H(Xp) = - f . dye(x) Py (x) log Py (x) 9)
which becomes the differer:tTaIXentropy for a continuous observable
HOG) == [ drtusl i) loglys (13 s o) (10)
and the usual entropy for axdeisi:rete observable
H(Xj) =~ ZQ (Vs (1Bl ¥rs (x))) 10g (s ()1 Big 915 (x))) (11)
xX;€Qx

It should be noted that the differential entropy can take negative values [4]. On the other hand,
the von Neumann entropy of the physical system in the quantumaasegiven by

S(pin) = —Trs[pi log i) (12)

To measure the observatig of the physical system, we must first prepare a measurement
apparatus, the initial state of which is given by a statistical operatfyidefined on the Hilbert
spaceH 4, of the measurement apparatus. We then interact the measurement apgavétus
the physical systens to make some quantum correlation between them. Heidslebe a
unitary operator that describes the state of change of the physical system and the measurement
apparatus, which is caused by the system—apparatus interaction

N i T ~ N n ~ n
Uss = Texp{ - ﬁ/ dt[Hy (1) ® 14 + Is @ Hy' (1) + Hiﬁ{‘(t)]} (13)
0
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where H3 (1) and H¢ (1) are the individual Hamiltonians of the physical system and the
measurement apparatus, which may depend on timefﬁifdt) is the system—apparatus
interaction Hamiltonian which acts only during the interaction tigpe(0 < i < 7). In this
equation, the symbol ‘T’ stands for taking the chronological ordering of operators. Just before
the readout of the measurement outcome, the compound quantum state of the physical system
and the measurement apparatus is given by a statistical operator

Boik = Usa (5 ® AU, (14)
Although we have considered the case where the state change can be described by the unitary
operator, the results obtained in this paper are still valid even if the state change is given by a
completely positive and trace-preserving map [42—46] whichincludes a unitary transformation
as a special case. When the state chaifg® o — 4S54 is a complete positive and trace-
preserving map, we can express the statistical opefgtprby introducing an appropriate
environmental system [43]

ﬁglft = TrE[uSAE(pln ® pln ® pln)uSAE] (15)

wherells g is a unitary operatop?. is the initial state of the environmental system angl i§r
the trace operation of the environmental system. In such a case, we substitg ® 4E,
Va ® I and Tryg = Tr,Tre for Usa, 5, Ya and Try in the results obtained in this paper.

We finally perform the readout of the result of the quantum measurement process. The
readout of the measurement outcome is described by a positive operator-valued measure
(POVM) defined on the Hilbert spade, of the measurement apparatus. Here)lgtEy)
be the POVM that describes the readout process, the outcome of which belongs #ya set
(S Qy), whereQy represents the set of all possible outcomes of the quantum measurement
process [30, 31]. We assume that the POYMEy) can be expressed in the following form

Ia(Ey) = / dv (1) D () (16)
yeEy
which satisfies the relations
Va(Ey) > Va(Qy) = Iy (17)

for any subseEY C Qy. Slnce the operatQYA(EY) is a POVM but nota PVM in general, the
relation Y, (Ey)Ya(Fy) = Ya(Ey N Fy) does not necessarily hold evenAf N Fy = @.

When we consider the quantum measurement process for a discrete observable, we set
dv(y) = Zy ca, 8(y — y;j)dy in equation (16). If the POVMY4(Ey) becomes a PVM,

the readout of the measurement outcome is equivalent to measuring the pointer observable
g(¥,) of the measurement apparatus

. SV4(Q .
g(Ya) =/ Olv(y)g(y)M =/ dv(y) g YVa(y). (18)
YEQy sv(y) yEQy

Here, it is important to note that there are quantum measurement processes in which we
cannot describe the readout process by any PVM. Typical examples are the photon counting
process which is a continuous quantum measurement of photon number [48-51] and the
operational phase measurement [52-54]. Therefore, we do not assume the existence of the
pointer observable of the measurement apparatus and we use the POVM to describe the readout
of the measurement outcome.

We now perform the readout of the result exhibited by the measurement apparatus just
after interaction with the physical system. Then the probability that the measurement outcome
y belongs to the sefy (C Qy) is calculated by the formula [42—46]

PA(EY) = Trsal(Is ® Va(Ey))p3a] (19)
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where T4 stands for the trace operation over the tensor product Hilbert sgace H
and the statistical operatgg: is given by equation (14). Here we introduce the probability
function P, (y) by

A A SPA (2
PA(y) = Trsal(Is ® Va(y) ] = %y)”

in terms of which we obtain the output probabilf®y, (Ey) = fveEY dv(y) P&:(»). When we
have obtained the measurement outcome which belongs fo tiig sttte post-measurement

state of the physical system is calculated by means of the state-reduction formula [42—46]

(20)

pa(Ey) = dv(y) Po(3) Pa(y) (21)

Poul Ev) Jyer,
where the conditional statistical operaj@,(y) of the physical system, called the posterior
state, is given by

Tral(s ® Ya(»)) s
Trsal(s ® Ya()) A3k
where Tr, is the trace operation over the Hilbert spatg of the measurement apparatus. In

the post-measurement st@tg,(Ey) of the physical system, the observalilgtakes the value
x belonging to the seky with conditional probability

laout(y) = (22)

PSA(Ex, Ey)

PSH{(Ex|Ey) = Trs[Xs(Ex)po(Ev)] = PEED)

(23)
with
Pout(Ex, Ey) = Trsa[(Xs(Ex) ® Ya(Ev)) b @9

which represents the joint probability that in the compound quantum/iatehe observable

X takes the value in the setEy and the measurement outcombelongs to the seffy. As
we have done in equations (8) and (20), we introduce the probability fundéfhs, y) and
P(;S'ut(xly) by

8P (Qx, Q)

PSA , — out
o (6 ) = g ev ()

= Tra(WsI[Us ® Va())psal l¥s(x)) (25)
. Py (x,y)
PEAELY) = (sl ps()) = 2,
Pou(y)
Furthermore, according to Bayes theorem [55], we obtain the posterior probability function of
the measurement apparatus

P3f(x,y)  PS(xIy)PL(y)
Pau(yl) = = = o o 27)
out(X) out(X)

(26)

where the probability functio®? ,(x) is given by P3,.(x) = Trsa[(Xs(x) @ 14)p34].
Using the probability functions, we introduce the Shannon entropies in the quantum
measurement process

H(XS,) =— / . di(x) PS4(x) log P3 (x) (28)

H(YA) = — / dv(y) PA(y) log PA() (29)
YEQy
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HXS YAy = — / ) [ )P log Pyl (30)
xeQy

Y€EQy

HYA X5 = — / . dp(x) . dv(y) PSR (x, y) log Poy(vlx)  (31)
xey yelly

G Y0 = - [ e [ dpSe g Py @)
X€ily yE&ldy

which satisfy well known relations among the entropies
H(Xgu You) = H(Xgul You) + H(Ygy,
= H(Ygul Xow) + H(Xou)- (33)

The mutual entropy between the physical system and the measurement apparatus just after
interaction is given by

H (Yo Xou) = H(Xgu) + H(Ygy) = H(Xou You)- (34)

Furthermore, we introduce the Shannon entrafgy;2) of the measurement apparatus before
interaction with the physical system

HYM = — / dv(y) PA(y) log P2 () (35)
YEQyY

where P2 (y) = TrA[JAJA(y)/Siﬁ]. On the other hand, the von Neumann entropy of the post-
measurement state of the physical system is given by

S5l Yo = — f . dv(y) Pay) T s[A5(3) 109 3] (36)
yeldy

where the output probability functioRZ,(y) and the conditional statistical operaf@j;,(y)

are given, respectively, by equations (20) and (22). Once we obtain the result of the quantum
measurement process, the decreases of the Shannon entropy and the von Neumann entropy of
the physical system are calculated by

AH(X(SM, Xif\wcﬁn) = H(Xif\ - H(Xgut|ycﬁ1t (37)
AS(ﬁgut’ ﬁiﬁlYé‘ut) = S(ﬁiﬁ - S(ﬁoutlY(ﬁlt)' (38)

These quantities will be compared with the amount of information about the observable of the
physical system that can be obtained by the quantum measurement process.

3. Information gain in quantum measurement processes

In this section, we consider the information on the observ&Rlef the physical system in the
quantum state? , which can be obtained by the quantum measurement process. The output
probability of the quantum measurement process is given by equation (19) or (20). Then, by
substituting equation (14) into equations (19) and (20), we obtain

PSW(Ey) = Trs[Zs(Ey)po] PS(y) = Trs[Zs(»)p] (39)

where the operatmﬁ‘s(y) andZs(Ey) defined on the Hilbert spagdés of the physical system
are given, respectively, by

Zs(y) = Traltdl (Fs ® Ya())Usa(s ® pi)] (40)
Zg(Ey) = TrA[Z/A{;A(IAS ® Va(Ex)Usa(ls ® pi)] (41)
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where the relationss(Ey) = [ _, dv(y)Zs(y) and Zs(y) = 8§Z5(Qy)/8v(y) hold. It

is found from equation (17) and the unitarity of the operaigx that the operato€s(Ey)
becomes a POVM of the physical system, which satisfies the relations

Zs(Ey) >0 Z5(Qy) = Is. (42)

Here, it shoujd be noted that although the operatgiEy) of the physical system is a PVM,
the operatoiZs(Ey) does not becomes a PVM in general. We introduce an operator of the
physical system by the following relation

§(Zs) = f . dv(»)g()Zs(y) (43)

whereg(y) is an analytic function of. SmceZS(Ey) isnota PVM,g(ZS) does not become
Hermitian. In fact, it is easy to see thatZs) # > gnZ” evenifg(y) = >, 8.y". The
operatorsXS(EX) and f(XS) of the physical system do not depend on the measurement
apparatus and the system-apparatus interaction whil&y) and g(ZS) defined on the
Hilbert spaceés are determined only by the measurement apparatus and the system—apparatus
interaction and are independent of the intrinsic properties of the physical system. For this
reasonXs(Ey) or f(Xs) are referred to as the intrinsic observable of the physical system and
Z4(Ey) or g(ZS) are called the operational observable of the physical system [56-58]. The
operational observable is also referred to as the unsharp [59-61] or fuzzy observable [62—-66].
To proceed further, we assume that the operational obserdable determined by the
quantum measurement process commutes with the intrinsic obseA/ghleof the physical
system, that is, fs(x), Zs(y)] = O for allx € Qx andy € Qy. This commutability is
a mathematical condition imposed on quantum measurement processes and at present, the
physical implications are not clear. Under this assumption, we can express the operational
observableZs(y) in the following form

Zs(y) = / . du () [P (x)) Psa (10) (Y5 ()]

= / du(x) Psa (y1x) Xs (x) (44)
X€QX

vyhich isformallywritten aés(y) PSA(y|XS) (see equation (5)). Since we have(x) >
Zs(y) = 0 andXs(Qy) = Z5(Qy) = Is, the kernel functionPs 4 (v|x) satisfies the relatlons

Psa(ylx) > 0 f dv(y) Psa(ylx) = L. (45)
YEQy

Substituting equation (44) into (39), we find that the kernel funclgn(y|x) gives the relation
between the initial probability’3 (x) of the physical system and the output probabilt,(v)
of the quantum measurement process

PAG) = / A () Psa (y10) PE o). (46)
xeQy

Thus, itis seen from equations (45) and (46) that the kernel fun€§@ty|x) is the conditional
probability (density) that the measurement outcome lies in the infinitesimal range around
value y when the intrinsic observable of the physical system in the quantum gjatizkes

a value in the infinitesimal range around More precisely, the conditional probability that
the measurement outcome belongs to theEs€tC 2y) when the intrinsic observable of the
physical system takes a value belonging to theisgic Qx) is given by

Psa(Ey|Ex) = / du(x) dv(y) Psa(ylx). (47)

xeEyx yEEy
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For the quantum measurement processes of discrete observables, the conditional probability
Ps(y:|x;) and the output probabilitP2,(y;) become

Psa(ilxj) = (s ) Zs (i) s (x))) (48)
Pou(yi) = D Psa(yilxj) P(x)). (49)

Xj€QX

On the other hand, if the output probabilig},(y) is written in the form of equation (46),
the operational observablg (y) must satisfy the following relation for any initial statistical
operatorp:

Trs{[é’s(y) —/ . dM(x)PSA(y|x)';€S(X):|/3if1} =0 (50)

which yields equation (44). Therefore, the commutability of the intrinsic and operational
observables is necessary and sufficient for the existence of the conditional protrahaidigyx )
in the quantum measurement process.

According to Bayes theorem [55], we obtain the posterior probabflity(x|y) that the
intrinsic observable of the physical system in the initial quantum gtatakes a value when
the measurement outcomevas given

S
By (xly) = PSAA()’,X) _ PSA(YLX)Pin(x) (51)
Pow(y) Poue(y)

wherePs, (y, x) is the joint probability of the intrinsic observable of the physical system and
the outcome of the quantum measurement process. Using these probabilities, the joint and
conditional entropies in the quantum measurement process are given, respectively, by

HYA XS) = — / duo) [ )P0 10g Psa(y ) (52)

XeQy YEQy

HYAIXS) = — / _dut) / )P0 l0g PGk (69
xeQy yeily

HX3IYo = —f di(x) dv(y) Psa(y, x) log Psa(x]y) (54)
xeQy yeQy

which satisfies the relations
HYS, X5) = HY | X5) + H(X3)
= H(X3|YA) + HYZ, (55)

whereH (X)) andH (YZ,) are given, respectively, by equations (9) and (29). The information
about the intrinsic observable of the physical system in the initial quantumgstatenich can

be obtained by the quantum measurement process, is equivalent to the information transmitted
from the physical system in the initial quantum stafeto the measurement apparatus in the
output stateps by unitary transformatiods,. This means that the quantum measurement
process can be considered a quantum communication channel between the physical system to
be measured and the measurement apparatus. Thus, when the relations given by equations (45)
and (46) hold, we can represent the amount of information about the intrinsic observable of
the physical system by the Shannon mutual entropy

T(YAs XSy =HYA) + H(XS) — HYA, X5). (56)

out’

Therefore, we can summarize the result in the following theorem.
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Theorem 1. If the intrinsic observablels (x) of the physical system to be measured commutes
with the operational observabl&s(y) determined by the quantum measurement process, that
is, [Xs(x), Zs(y)] = Oforall x € Qy andy € Qy, the amount of information about the
intrinsic observable of the physical system in the quantum gatehich can be obtained by
the quantum measurement process, is given by the Shannon mutual entropy

Psa(ylx)
[V X5) = / du(x) [ dv(y)Psalylx) PS(x) log [ﬁ—y]
xeQy yeQy Piu(»)

=HY ) +H(X) — HYA, X3

= H(Y5) — HYLIXD)

= H(Xjp) — H(X{| Yo (57)
where the initial probabilityP} (x) of the physical system and the output probabifit;(y)
of the measurement apparatus are given, respectively, by equations (8) and (20) and the
conditional probabilityPgs4 (y|x) is determined by equation (44).

Thus far we have notimposed any restriction on the quantum measurement process, except
for the commutativity of the intrinsic and operational observables of the physical system,
[Xs(x), Zs(y)] = 0. In some caseghe probability reproducibility conditioj61, 67, 68]
is introduced for investigating the properties of quantum measurement processes and their
interpretation. In our notations, this condition is represented by the following relation

Trs[Xs (Al = Trs[Zs(e(x) A, (58)
whereg (y) is some analytic function which connects the measurement outcontiethe value
x of the intrinsic observable of the physical system. Of course, this relation is equivalent to the
equality P (x) = P4 (g(x)). Furthermore, the equalitiegudg—1(y)) = dv(y) andg(Qyx) =
Qy are required, from which we have the consistency for the normalization conditions

1= [ aumrio= [ duorheu = [ e onrao

yeg(f2x)
- / du(3) P ). (59)
YEQyY

Since the relation given by equation (58) holds for any statistical opefdtaf the phys-

ical system, we obtain the equalit)fls(x) = és(g(x)) of the intrinsic and operational
observables, which indicates that the conditional probability in equation (44) is given by
Psa(ylx) = 8(y — g(x)) or Psa(ylx) = 8y ,4x)-. Thus, it is found that the probability re-
producibility condition is stronger than the commutability of the intrinsic and operational
observables.

Since the differential entropy does not take a finite valuesfdunction probability
densities, we consider the quantum measurement process of a discrete observable that satisfies
the probability reproducibility condition. In this case, the information gaifiz; X2) is
calculated to be

P .
IYae Xy = > > PSA(yux,»)aﬁ(x,-)log[w}
X‘,‘GQX ykEQy POUt(yk)
= — Y Pou(s(x))log Pa(s(x;))
x;€Qx
= — Y Pou()10g Pay(yi) = H(Yg)
YK€y
= — Y P(xplog Py(x;) = H(X}) (60)

xj€Qy
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which is equivalent taH (X3 |Y4,) = H(YZ/XS) = 0. This result means that complete
information can be obtamed from the measurement outcomes and the information gain is
given by the Shannon entropy of the physical system in the quantumgtat@herefore,

it is found that under the probability reproducibility condition, the Shannon entropy of the
physical system becomes equal to the amount of information which we can obtain by the
guantum measurement process. Furthermore, since the von Neumann entropy is no greater
than the Shannon entropy, the probability reproducibility condition yields a relation among
the information gain, the Shannon and von Neumann entropies

I( out’ |n - H(X S(,ﬁm) (61)
1(Yy out’ ) =H(Y, ut) (pout (62)

WhereS(ﬁout) is the von Neumann entropy of the measurement apparatus in the quantum state
pout - TrSlOout

4. Entropy change in quantum measurement processes

When we perform a quantum measurement on a physical system to obtain information about
an intrinsic observable, the quantum state of the measured physical system changes due to the
effect of the quantum measurement process. Such a state change induces a decrease of the
entropy of the measured physical system since the information about the physical system is
obtained and the uncertainty of the physical system is reduced. When we obtain the result
of the quantum measurement process, the decreases of the Shannon entropy and the von
Neumann entropy of the physical system are given, respectively, by equations (37) and (38).
In this section, we compare the decrease of the Shannon entropy with that of the von Neumann
entropy. Here, we consider quantum measurement processes of only discrete observables.
We first consider the case where the initial quantum state of the physical system is a
statistical mixture of the eigenstates of the intrinsic observable, where the statistical ofigrator
commutes with the intrinsic observabte (x ;) of the physical system, that iﬁi{, Xs(x =0
forallx; € Qx. Inthis case, we can represent the statistical opefgtan the following form

P =Y Pa@)IUsCep))(¥stxp| = Pa(Xs) (63)
X €Qx
where P3(x;) > 0 and)_, <oy P3(x;) = 1. Since|ys(x;)) is the orthonormal eigenstate

state, the Shannon entrohyX ) and the von Neumann entrogys; ) of the physical system
in the initial quantum statg; are equal

S(pw) = H(Xj) =— > Pp(x;)log Pa(x)). (64)
x;€Qx

On the other hand, when we obtain the measurement outcome, the von Neumann entropy
S(pS4Ya of the physical system in the post-measurement state can be evaluated as follows

Sl Yo = — D Po0OTrs[hu(yi) 109 A (1))
YEQy
< = Y Paun) D Pa(xjlyi) 10g Poy(x;1ye)
Y EQy X;€EQy

- Z Z out(xj’yk)k)g out(xj|)’k)

Vk€Qy Xx;E€Qx

H (Xoul You (65)
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where P3(x;ly) = (¥s(x;)185:(v)1¥s(x;)) and we have used equations (25) and (26).
The inequality on the right-hand side of this equation is ensured by the Jensen inequality
[4] or equivalently by the concavity of the entropy functiofi(k) = —x logx] [20]. Using
equations (64) and (65), we obtain the inequality

AS (ﬁgut’ ﬁiichﬁjo =S (ﬁiﬁ) ) (ﬁgutIY[ﬁ,t)
> H(Xip) — H(XoulYou
= AH (X5 X[ Yo (66)
Thus if the commutativity 4, Xs(x;)] = 0 holds for allx; € Qx, the decrease of the von
Neumann entropy of the physical system is no less than that of the Shannon entropy in the
gquantum measurement process of the discrete observable.

We next consider the case where the physical system after the measurement is a statistical
mixture of the eigenstates of the intrinsic observable, where the conditional statistical operator
pa(vk) of the post-measurement state of the physical system commutes with the intrinsic
observablets(x;) of the physical system, that i$J,,(vi), Xs(x;)] = 0 for all x; € Qx and
yi € Qy. Then, the conditional statistical operafi,(yx) can be expressed as

Past0) = D Pou(xi 1y [Ws () (¥rs ()| = Poy(Xslyi) (67)
ey
where Po,(xjlys) > 0 and )", o Pou(xjly) = 1. In this case, it is easy to see

from equations (30) and (36) that the following equality is established after the quantum
measurement process

S(Paul Yo = HX3ul Yo = — D Y Pont(xj. 31 10g P10 (68)

YK€y x;€Qx

Using the fact that the inequality(43) < H(X3) holds in general, we find that decreases of
the von Neumann entropy of the physical system is no greater than that of the Shannon entropy
in the quantum measurement process of the discrete observable

AS(Poue Pl YD) < AH (X3 XYoo, (69)

in out’

Therefore, we can summarize the results in the following theorem.

Theorem 2. In quantum measurement processes of discrete observables, when we obtain the
measurement outcome, decreases of the Shannon entropy and the von Neumann entropy of the
measured physical system satisfy the inequality

AS(BS PEIVED < AH (XS X3IVEy (70)

out’ out’

if the conditional statistical operatopy,(yx) of the post-measurement state of the physical
system commutes with the intrinsic observabijéx ;) and

AS(Pou AnlYou) = AH (Xou Xinl You (71)

if the initial statistical operatorps of the physical system to be measured commutes with the
intrinsic observablets (x;). Inequations (70) and (71), the equality holds if the commutativity
[55.40m), Xs(x )] =[S, Xs(x;)] = Ois established for alk; € Qx andy; € Qy.

Finally we remark that the change of von Neumann entropy of the physical system in
quantum measurement processes has been investigated by Groenewold, Lindblad and Ozawa
[69-72].
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5. Information gain and entropy change

In section 3, we investigated the information gaitY2,; X5 ) in the quantum measurement
process and in section 4, we considered the entropy decrensexs ,, X5 Y4, and
AS(PSw P |YA) of the physical system that are caused by the quantum measurement process.
In this section, we therefore mvestrgate the relation between the informatiod @& X))

and the entropy decreadd? (X3, X |Y4,). Forthis purpose, we firstrecall that the condrtlon
under which the amount of mformatlon obtained by the quantum measurement process can be
represented by the Shannon mutual entropy is the commutativity of the intrinsic and operational
observables of the physical system, that¥§(x), Zs(y)] = 0 for all x € Qx andy € Qy.

Then from equations (40) and (44) we can write this condition as

Traltdl, (Fs ® Ya)Usalls ® p)] = / du(x) Psa(y]x) Xs (x). (72)

xeQy

By using the completeness relatigﬁxnéQ du(x)Xs(x) = I, this relation becomes

/ . dM(X)Tl’A[USA(XS(X) ® Vay)Usa(ls @ pid)] —/ du(x) Psa(y]x) Xs(x). (73)

x€Qy
To obtain the relation between information gain and entropy decrease, we further impose a
condition on the quantum measurement process. The condition is that the integrand on the
left-hand side of equation (73) is equivalent to that on the right-hand side, which can be given
in the following form

Traltd], (Rs () @ Da)Usa(ls ® Aip)] = Psa(y1f (x: ) Xs(f (x: y)) (74)
where f(x; y) is a function ofx that in general depends gnand the spectral s&€y of the
intrinsic observable, the measurg @) and the conditional probabilitPs. (y|x) satisfy the
relation

/Q du(x)PSA(ylx)F(X)zf . du(x) Psa(y| f s ) F(f (x5 9)). (75)

Here F(x) is an arbitrary non-singular function of Of course, the condition given by
equations (74) and (75) is stronger than that given by equation (73). In fact, it is easy to see
that equation (73) holds if equations (74) and (75) are satisfied. Furthermore, equation (74)
means that except for the conditional probability, the intrinsic observable is transformed
as Xs(x) — Xs(x') with x’ = f(x;y) by the dual map of the completely positive map

ﬁiﬁ g Iagut(y)'

As an example that satisfies the relations given by equations (74) and (75), let us consider a
quantum non-demolition measurement of the intrinsic observalle) of the physical system
[73-75]. Here we assume that the system—apparatus interaction is sufficiently strong so that
IASAO | > 1HS @) and | A2 1)) > I1H{ ()|, where| X || is a norm of operatoX. In

int int

this case, the PVMs(x), the POVMY, (y) and the unitary operatrbrSA satisfy
[Xs(x),Usal =0 [Va(y),Usa]l #O. (76)
It is easy to see from equations (40) and (76) that the commutativity of the intrinsic

and operational observablesY(x), Zs(y)] = 0, holds for the quantum non-demolition
measurement. Then, we can calculate the left-hand side of equation (74) as follows

Traltlin (X5 (x) ® Va)sals ® pip)] = Traltdl, (Is ® Va(y)Usa (s ® pip)] Xs(x)
= / i die(x") Psa(y|x") Xs (x") Xs (x)

= Psa(y|x)Xs(x) (77)
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where we have used equation (72) and the fact that the intrinsic obsekabbeof the physical
systemis an orthogonal projector. This result shows thatthe fungtiony) in equation (74) is
given by f (x; y) = x for the quantum non-demolition measurement. Therefore, any quantum
non-demolition measurement of the intrinsic observatilér) of the physical system satisfies
the relations given by equations (74) and (75).

To investigate the entropy decrease of the physical system that is caused by the
quantum measurement process, we calculate the joint probability furgdibex, y) given by
equation (25) under condition (74)

Poit (. y) = (UsTral(s @ Ya()asill¥s ()
= Trsal(As(x) ® Da()Usa (53 ® AU ]
=Trga [I/Af;rA(?ES(X) ® Va)Usa (53 @ pi]
= Psa(y £ (e YD Trs[Xs(f (x: )
= Psa(y]f (x; ) (Wrs )i ¥s () |ems roxiy)
= Psa(y1f (x3 ) P (f (x5 ). (78)

If the function f (x; y) is independent of, this result yields the equalit§s (x) = P (f(x)).

This means that when we do not obtain the measurement outcome, the probability of the
observableX in the post-measurement state of the physical system is equal to that of the
observablef (Xs) in the initial quantum state of the physical system. Using equations (75)
and (78), we can calculate the joint entrally X3, Ya,) as follows

H(Xgyo You) = —/ o du(x) . dv(y) Pog (x, ) log Pog (x, y)
Y€y yeily

= —/ . dp(x) o dv(y) Psa(y|.f (s ) P (f (x5 )
xey yelly

x 10g[Psa(y] f (x5 ) P (f (x; y)]
= —/ . de(x) . dv(y) Psa(y]x) P (x) 10g[Psa(y|x) P (x)]
xXeldyx Y€y

= HY | X3) + H(X3)
= H(Xjp) + H(Yo) — I (Yo Xip) (79)
where we have used equation (57). It should be noted that this relation is different from the
well known relation
H(Xgu You) = H(Xgw) + H(Ygl) — I (Xgus You)- (80)
From equations (37) and (79), the entropy decrease of the physical system in the quantum
measurement process becomes
AH (Xou Xip[You) = H(Xi) — H(Xgu|You
= H(Xjp) + H(Yg) — H(Xgu You)
=1 (Youe Xin). (81)
Therefore we obtain the following theorem.
Theorem 3. If the quantum measurement process satisfies the congition given by
equations (74) and (75), the amount of information about the intrinsic obseraglgle of the

physical system in the quantum stafs which can be obtained by the quantum measurement
process, is equal to the decrease of the Shannon entropy of the measured physical system

AH (Xouw XinlYou = 1 (Yous Xin)- (82)
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In particular, this equality always holds for any quantum non-demolition measurement of the
intrinsic observable of the physical system.

It is important to note that the condition of the theorem is sufficient, but not necessary, to
hold equality (82). To see this, we consider the case that the intrinsic obsefableof the
physical system has a discrete and non-degenerate spectrum and the quantum measurement
process satisfies the probability reproducibility condition (58). It should be noted that the
probability reproducibility condition (58) does not guarantee the condition of the theorem. In
this case, we obtain the relation from equations (26) and (78)

PR(x1y) = (Ys ()05 rs(x))
P3(f(x;y)
Po/tn(y)
=8y.5(s(xiy) (83)

where we have use®gs(y|x) = 8y ) and Piﬁ(x) = PA(g(x)). Since|ys(x)) is the
eigenstate of the discrete and non-degenerate observable, equatiog(f(x; y)) has a
unique solutiont(y) for giveny. Thus, we obtaing3 (v) = |¥s(X())(¥s(E(y))| from
equation (83). This result indicates that after the measurement outcome was obtained,
both the Shannon entropy and von Neumann entropy of the physical system vanish, that
is H(X3,Yao = S(pS.Ya = 0. Thisis consistent with the result obtained in section 3 that
when the quantum measurement process satisfies the probability reproducibility condition,
complete information can be obtained from the measurement outcomes. In this case, since we
haveAH (X5, X51Y&) = H(X3), equality (82) holds.

Combining theorem 3 with theorem 2, we find that if the quantum measurement process
of a discrete observable satisfies the relations given by equations (74) and (75), the amount
of information 7 (YZ,; X3) which can be obtained by the quantum measurement process,

= 8y, g(f(x:y)

decreases of the Shannon entropy and the von Neumann entxépyx s ., X3 |Ya,) and
AS(PSuw P 1YA), of the measured physical system satisfy
AS(IOOUI’ plr‘l' UI) AH(XOUI’ | Ut) - I( out’ ) (84)

if the conditional statistical operatgiS (yx) of the post-measurement state of the physical
system commutes with the intrinsic observaligx;) and

AS(pout’ IOIr'I| ut) AH(Xoutv | out) - I( out’ (85)

if the initial statistical operatop? of the physical system commutes with the intrinsic
observabIeYs(x ). Furthermore, if the quantum measurement process satisfies the probability
reprodUC|b|I|ty cond|t|on the relations given by equatlons (84) and (85), respectively, become
S(%) < H(X3) = 1(Ygs X andS(pp) = H(X3) = 1 (Ve X

Before closrng this section, we consider the case where the physical system before the
interaction with the measurement apparatus is in an eigenstate of the intrinsic observable with
eigenvaluex, that is,éIn |vs (X)) (¥s(X)], where we assume a discrete and non-degenerate
observable. In this case, since we obtaimX ) = 0 and P4,(ye) = Psa(ycl%) from
equations (9) and (46), it is seen from equation (57) that the information gain becomes zero,
that is7 (Y24 X5) = 0. Therefore, when the initial quantum state of the physical system
is the eigenstate of the intrinsic observable with discrete and non-degenerate spectrum, the
information gain becomes zero. This result is consistent with our intuition that if we have
complete knowledge of the intrinsic observable of the physical system, we cannot obtain any
further information aboutit, even though we perform any quantum measurement on the physical
system. Furthermore, if the quantum measurement process satisfies the condition given by
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equations (74) and (75), we obtain the relatidtX 3., Yoi) = H (Y, andH (X5, |Y4) =0
sinceH(Xif]) = 1(Y2s Xii) = 0. Thus, we find that the entropy decrease of the measured
physical system becomes zero, thahif (X5, X5 Y4 = 0.

out’

6. Examples of quantum measurement processes

In this section, we consider two simple examples of quantum measurement processes to
examine the general results obtained in sections 3-5. One is the standard position measurement
[18] and the other is the photon number measurement by means of a lossless beam splitter
[76, 77]. We obtain the information gain and the entropy change in these quantum measurement
processes.

6.1. Standard position measurement

In position measurement of the physical system, the intrinsic observable of the physical system
and the PVM of the measurement apparatus are given, respectively(by= |xs)(xs| and

37A(y) = |ya){val, where|xs) and|y,) are the eigenstates of the position operafgrand

x4 of the physical system and the measurement apparatus, satisfying the eigenvalue equations
Xs|xs) = x|xs) andXa|ya) = ylya). The position operatat, corresponds to the pointer
observable of the measurement apparatus. In this case, the,setsd 2y are the set of all

real numbers. The unitary operator that describes the state change due to interaction between
the physical system and the measurement apparatus in the measurement process is assumed to
be

Usa = exp(—iis ® pa) (86)

wherep, is the momentum operator of the measurement apparatus, canonically conjugate to
the position operatat, and we seh iy /h = 1 with the coupling constarit, for the sake of
simplicity. Then the compound quantum stafg of the physical system and the measurement
apparatus just after the interaction becomes

o0 o0 o0 o0
ﬁm=f Mf Mf w/ dy' (sl 1) (a2 1Y)
X |xs) (x| @ |xa + ya)(xy + yil. (87)

Hence, we can obtain the conditional statistical operaq(r) of the physical system and the
output probability density2,(r) of the measurement apparatus

o0 o) AS _ HA —

I(Sgut(r) = / dx/ dy|xs>[(x5|p|n|ys><rA . xA|p|n|rA YA>:|<yS| (88)
—o0 —00 Pout(r)

Py = [ delra = xalidlra = xa P30 (89)

where P3(x) = (xs|p3 |xs) is the position probability density of the physical system in the
initial quantum stateps. The operational observablgs(r) of the physical system that is

determined by the position measurement is obtained from equation (40)

%m=/ dox|xs) (ra — xalPplra — xa) (xsl

]

=f A (rs — 2l PA1ra — 200 B () (90)

o0
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which indicates that the conditional probability densty (y|x) in the position measurement
process is given by

Psa(y1x) = (ya = Xaldinlya —xa) = P (y = x) (91)
where PA(y) = (yalpialya) is the initial probability density of the measurement apparatus.
It is easy to see from equation (90) that the intrjnsic position observable commutes with the
operational position observable, namelgs(x), Zs(r)) = 0 for all x andr. Therefore,
theorem 1 holds for the standard position measurement of the physical system.

The amount of informatior (Y¢,; X5 ) about the intrinsic position observable of the
physical system is calculated from equations (57) and (91)

vaex = [ o [ dpacin (y)log[ S"(('ﬂ
utlX

—H( m>+/ dx/ dy P (x — y)PS(y) log PA(x — )

=H(Y, ut)+/ dx/ dy Py (x) P (v) log Py (x)

This result indicates that the amount of mformatlon on the position observable of the physical
system is equal to the entropy increase of the measurement apparatus. We also obtain
the equalityH(Yig‘) H(Y, ut|X ) which means that when we have complete knowledge
of the position observable of the physical system, the uncertainty of the result of the
position measurement is equal to the uncertainty of the initial position of the measurement
apparatus.

We next examine the relations given by equations (74) and (75). For the position
measurement, it is easy to calculate the left-hand side of equation (74)

Traltd!,(Xs(x) @ Da(0))Usa (s ® Hi)] = (val €Xp(—ix pa)pis explix p)lya)|xs) (xs
= (ya — xalpidlya — xa)lxs) (xs]
= Psa(y|x)Xs(x) (93)

where we have used equation (91). This result indicates that the position measurement of
the physical system satisfies the relations given by equations (74) and (75§ with) =

X. Thus, it is found from theorem 3 and equation (92) that the amount of information
1Y X5) about the position observable of the physical system is equal to the decrease

AH(Xout, S1Y, ut) of the Shannon entropy of the physical system and to the increase
HY4) — ( 4) of the Shannon entropy of the measurement apparatus in the position
measurement.

6.2. Photon number measurement

We next consider the photon number measurement of the physical system by means of a
lossless beam splitter [76, 77]. In this case, the intrinsic observable of the physical system and
the PVM of the measurement apparatus becoMgs) = |ns)(ns| andY,(n) = |[n4)(nal,
wherelng) and|n ) are the Fock states of the physical system and the measurement apparatus.
The pointer observable is the photon number operator of the measurement apparatus. The
unitary operator that describes the state change due to the system—apparatus interaction (beam
splitting) is given by

Usa = exp[-0(a) ® ax — a5 ® a})] (94)
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wheredg and&§ (aa and&:r\) are the annihilation and creation operators of the physical system
(the measurement apparatus). Furthermore, the initial state of the measurement apparatus
is assumed to be the vacuum st@ = [04)(04|. Then the compound quantum state

o4 of the physical system and the measurement apparatus just after interaction becomes
[76,77]

oo 00 1 R m+n1/2 Lata 1 "
pai = Zozo[m!n!(?> } ag T prT 205 ag" @ Ima)(nal (95)

where7 = cos6 andR = sin’@ are the transmittance and reflectance of the beam
splitter.  The conditional statistical operat@g (m) of the physical system and the
output probability P4(m) of the photon number measurement are given, respectively,

by

~ 1ats A 1ata A
59 ay Teids pT a0 9
pout(m) = amtatac as Latac ~tm (%6)
Trs[ag T 2% p T2%%a"]

(o]

nl m n—m
P£t<m>=;m—m!( =i T P (97)
where PS(n) = (ns|pSlns) is the photon number probability of the physical
system in the initial quantum state;. The operational observable of the

physical system defined by this photon number measurement is obtained from
equation (40)

Zs(m) = st _m),R'"T" " (ns|

! A~
- Z T mmTrm Ry (98)
— m!(n —m)!
which means that the conditional probabil®y 4 (m|n) is given by

Pss(m|n) = n—!R’"T"*’”. (99)
m!l(n —m)!

In the second equality of equation (98), we have used the faciithat oo (1/n! — 0)
if n is a negative integer. It is easy to see from equation (98) that the operational photon
number observabl€s(m) commutes with the intrinsic photon number observabign).
Therefore, theorem 1 holds for the photon number measurement by means of the lossless
beam splitter. Here we remark that the operational observable in the homodyne detection
was obtained by Banaszek andbdkiewicz [57] and their result shows the commutability
of the intrinsic and operational observables. Thus theorem 1 is established in homodyne
detection.

To examine the sufficient condition for theorem 3, we first calculate the left-hand side of
equation (74)

TFA[Z/’;A(XS(”) ® Vam)NUsa(Is ®104)(04)] = %<?) T304 T |ns)(ns|am72a9a3

(m +n)!
- m!n!
= Psa(m|m +n)Xs(m +n) (100)

R"T"|mg +ns)(mg + ng|
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where we have used equation (99). Thus, we have found that the relation given by equation (74)
is satisfied and the functiorf (x; y) from equation (74) is given byf(x;y) = x + y.
Furthermore, we can easily verify the relation given by equation (75)

> Patnln tmyFn+my = 3 P g iy

n=0 n=0
= n! magn—m
_ Z Ran mF(n)
I’I’ll(fl _
= Z Psa(m|n)F(n). (101)
n=0

This result means that the relation given by equation (75) is satisfied in the photon number
measurement. Therefore, since theorem 3 holds, we see that the amount of information
[(Ya: X5) on the photon number of the physical system is equal to the entropy decrease
AH(Xout, S|y, of the physical system in the photon number measurement. Although we
have to Con5|derthe photon number measurementby means of the beam splitter, the same results
can also be obtained in the photon number measurement with the non-degenerate parametric
amplifier, where the unitary operatid , is given bylls, = exp(—0(a: ® a} — as ® d,)). In

this case we havé(x; y) = x — y in equation (74).

We next consider changes of the Shannon entropy and the von Neumann entropy in the
photon number measurement by means of the lossless beam splitter. Since the conditional
statistical operatops,(m) of the post-measurement state of the physical system is given by
equation (96), we obtain the equalityS(p3,. A5 |Ya) = AH (X5, X5 Y4, if the initial
quantum states? of the physical system is diagonal with respect to the photon number
eigenstaténg), that isﬁif1 =0 Piﬁ(n)|n5)<ns|, since the conditional statistical operator
p3.«(m) becomes diagonal ji5 is diagonal with respect to the photon number eigenstate
On the other hand, when the initial quantum state of the physical system is a superposition of
vacuum and one-photon states [78]

Py =Y (Wsl W) = alOs) +b|1s) (102)

with |a|? + |b|? = 1, the conditional statistical operator of the physical system is given by

laout(o) = |wgut> (wgutl laout(l) = |OS> <OS| (103)

|a|2+T|b|?

where|yS,) = alOs) + TY2p|1s). Furthermore, the output probability of the measurement
apparatus becomes

PA(0) = |a|® + T |b|? PA(D) = RIbI?. (104)

Since both the input and conditional output staggsand p3,.(m), of the physical system are
pure, we obtain

S(hin) = SPoul Vo) = AS(Bou inlYol) = (105)
The decrease of Shannon entropy of the measured physical system is calculated to be
AH(Xgu XiplYal) = —(1 = Rlal*) log(1 — Rlal?)

—R|b|?log|b|? + (1 — R)|b|?log(l — R) (106)
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which yields the inequalith\ H (X3, X5 Y40 = AS(pS. A51Y4) = 0, where the equality
holds forT =0or7 = 1.

Finally we remark that the two quantum measurement processes considered here do not
satisfy the probability reproducibility condition. In fact, from equations (90) and (98), the
probability reproducibility condition (58) is expressed as

(fa(x) = yaldipl fa(x) — ya) = 8(x = ) (107)
for the position measurement and
|
nm: Rg(z1)7—m—g(n) — 8m,n (108)

gm![m —gm]!
for the photon-number measurement, whéréx) is some real-valued function agdn) is a
non-negative integer. For any physical stafeof the measurement apparatus, (107) does not
hold, whatever functiorf, (x) is. Furthermore, it is easy to see that (108) is not satisfied for
any functiong (n).

7. Summary

In this paper we have considered the amount of information which we can obtain by means of
the quantum measurement process of the intrinsic observable of the physical system and we
have also investigated the entropy change of the measured physical system that is caused
by the quantum measurement process. We first obtained the condition under which the
information gain can be represented by Shannon mutual entropy. The condition is that the
intrinsic observable of the measured physical system commutes with the operational observable
defined by the quantum measurement process. As the example that satisfies this condition, the
standard position measurement and the photon number measurement by means of a lossless
beam splitter have been considered. Of course, there are many other quantum measurement
processes in which the condition holds [79]. We next investigated the entropy decreases of the
physical system that are caused by quantum measurement processes of discrete observables.
We have found that the decrease of the von Neumann entropy is no greater than that of the
Shannon entropy when the conditional statistical operator of the post-measurement state of the
physical system commutes with the intrinsic observable. On the other hand, a decrease of the
von Neumann entropy is no less than that of the Shannon entropy when the statistical operator
of the initial quantum state of the physical system commutes with the intrinsic observable.
Then, we have compared the amount of information which we can obtain by the quantum
measurement process with the entropy decrease of the measured physical system. We have
found that the conditions for information gain and entropy decrease are equal. In particular, any
guantum non-demolition measurement satisfies this condition. The general results obtained in
this paper are summarized in theorems 1, 2 and 3. In this paper, we have confined ourselves
to considering the cases where the intrinsic observable of the physical system is represented
by the PVM. When the intrinsic observable is given by the POVM, the results obtained in this
paper are slightly modified (see the appendix).

Appendix. Information and entropy for generalized observables

Inthis appendix, we consider the relation between the information gain and the entropy decrease
in aquantum measurement process for a generalized intrinsic observable of the physical system,
where we assume that the generalized observable can be represented by

&wn=/Edmm%m (A1)
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where X5 (x) is not an orthogonal projector. Note that the generalized observable satisfies
equation (2) but not equation (3). The Susskind—Glogower phase observable is the typical
example of the generalized observable [80, 81]. To describe the quantum measurement process,
we introduce a superoperatég(y)

Ls()Os = Tral(ls ® Ya(y)Usa(Os ® piUis 4] (A.2)
for any operatol0; of the physical system. This superoperator satisfies the relations
Ls(») >0 / ML) = Is (A3)
YEQy

where the superoperatﬁ@(y) is defined by the relation
Trs{Vs[Ls(y) Wsl} = Trs{[£{(y) Vs]Ws) (A.4)

for any operators/s and W of the physical system. Using the superoperaigfy), we
can express the probability functia,(y) of the measurement outcomes, the conditional
statistical operatops,(y) of the post-measurement state of the physical system and the

operational observablgs(y) as follows

PA) = Trs[Ls(0)p3] (A.5)

AS ﬁS(y)ﬁ%

Pout = 5> (A.6)
' Trs[Ls() o]

Z5(y) = LE)s. (A7)

To obtain the relation between the information gain and the entropy decrease, we impose the
condition on the quantum measurement process that the superom%:(at))maps the POVM
Xs(x) of the intrinsic observable as follows

L) Xs(x) = Klh(x; ) Rs(h(x; y)) (A.8)
where the function&(y|x) andi(x; y) satisfy the relation

/Q dM(X)/C(th(x;y))F(h(x;y))=/ du () (ylx) F (x) (A.9)

x€Qy
for any non-singular functio# (x). In this case, because of the linearity of the superoperator
Ls(y), the operational observabig (y) is calculated to be

Zs(y) = Lis = L} / dpe(x) X5 (x)

xeQy

= / du(x) L5 25 (x)
XeEQy

= f du (K Ih(x; y) Xs(h(x; )
xeQy

= f . du () K (1) Xs (x). (A.10)

This result indicates that the functidit y|x) represents the conditional probabiliB¢, (y|x)
of the quantum measurement process, that is

P(;:Jt(y):/ . de () (ylx) P (x). (A.11)

Therefore, if the relations given by equations (A.8) and (A.9) are satisfied, theorem 1 holds for
the quantum measurement process for the generalized observable. It should be noted here that
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tr)e operational observabﬁ%(y) does not commute with the intrinsic observalbigx) unless
Xs(x) is an orthogonal projector. We next calculate the joint probabi#tify (x, y) under the
conditions given by equations (A.8) and (A.9)

P38 (x, y) = PS(x]y) PAy) = Trs[Xs(x)p3 ()] PA)
= Trs[Xs(x)Ls(0) 3

= Trs[p3 £ () X5 ()]
= K(y|h(x; y)Trs[Xs(h(x; ¥)) o]
= K(ylh(x; y) PS(h(x; y)) (A.12)

which is equivalent to the relation given by equation (78). Therefore, it is easy to see that
theorem 3 holds for the quantum measurement process for the generalized observable that
satisfies the relations given by equations (A.8) and (A.9). We finally note that although
theorem 1 and theorem 3 hold for any quantum non-demolition measurement in the case
that the intrinsic observable is represented by PVM, they are, in general, no longer valid for
quantum non-demolition measurements for generalized observables.
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