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Abstract. Information obtained by a quantum measurement process performed on a physical
system and the entropy change of the measured physical system are considered in detail. It is shown
that the condition for the amount of information obtained by the quantum measurement process
to be represented by the Shannon mutual entropy is that the intrinsic observable of the measured
physical system commutes with the operational observable defined by the quantum measurement
process. When some measurement outcome is obtained, the decrease of the Shannon entropy of
the measured system is compared with that of the von Neumann entropy. Furthermore, a condition
is established under which the amount of information that can be established by the quantum
measurement process becomes equal to the decrease of the Shannon entropy of the measured
physical system.

1. Introduction

Entropy is one of the most important quantities not only in thermodynamics and statistical
mechanics [1, 2] but also in information theory and statistics [3, 4]. In statistical physics, the
second law of thermodynamics and the irreversibility of dynamical processes are characterized
by the increase of entropy [5]. In thermal equilibrium, the entropy of a physical system is given
by the celebrated Boltzmann formula which clarifies the relation between thermodynamic
entropy and probability. Lettingpj be the probability that the physical system is in thej th
microscopic state and lettingW be the total number of all possible microscopic states of the
physical system under some constraint; then the entropy of the physical system is given by the
formula,H(p) = −∑W

j=1pj logpj , where we set the Boltzmann constantkB = 1. In this
paper, we use the logarithm with arbitrary base. When we use the natural logarithm, the entropy
is measured innatsand when the logarithm with base two is applied, the entropy is measured in
bits. The maximum value of the entropy becomesHmax= max{pj }H(p) = logW which is the
Boltzmann formula. The thermal equilibrium state of the physical system is derived, according
to the entropy-maximum principle [6, 7]. The maximum value of the entropy is attained by
pj = 1/W for all j . This is equivalent to the principle of equala priori probabilities for a
microcanonical ensemble in thermal equilibrium [1].

The relation between entropy and information was considered first by Szilard [8] to
investigate the Maxwell demon in a thermodynamic system. He showed that the information
gain by the measurement process performed on the thermodynamic system decreases the
entropy of the measured physical system. Of course, the total entropy of the measured physical
system and the measurement apparatus increases due to the second law of thermodynamics.
The significance of this work was pointed out by Brillouin [9]. The most important work

0305-4470/99/091643+23$19.50 © 1999 IOP Publishing Ltd 1643



1644 M Ban

that showed the clear relation between entropy and information was done by Shannon [10–12]
who introduced entropy, conditional entropy and mutual entropy called the Shannon entropies,
into communication theory. He showed that the average length of a code word representing
a symbol generated from a message source is lower bounded by the Shannon entropy of the
message source. Furthermore, he found that the information can be reliably transmitted through
a noisy communication channel if the information rate is less than the channel capacity which
is the maximum value of the mutual entropy of the communication channel. The former is
referred to as the source-coding theorem and the latter is called the channel-coding theorem.
The information provided by experiments was investigated based on Shannon information
theory by Lindley [13]. Other interesting works that consider the relations between entropy,
information and randomness (algorithmic complexity or Kolmogorov complexity) of physical
systems have been done by Zurek [14, 15] and Caves [16]. The quantum Maxwell demon has
also been investigated by Lloyd [17].

Quantum mechanical entropy was introduced by von Neumann [18] in the quantum theory
of measurement processes. The quantum mechanical entropyS(ρ̂S), called von Neumann
entropy, is given by the formula,S(ρ̂S) = −TrS(ρ̂S log ρ̂S), whereρ̂S represents a statistical
operator which describes a quantum state of a physical system and TrS stands for the trace
operation over the Hilbert spaceHS of a physical system. When the physical system is prepared
in a quantum statêρS , an observablêXS of the physical system, which has the eigenstate
|ψS(x)〉 with eigenvaluex, takes the valuex with probabilityPX(x) = 〈ψS(x)|ρ̂S |ψS(x)〉.
Then the Shannon entropy of the observableX̂S in the quantum statêρS is given by
H(X̂S) = −

∑
x∈�X PX(x) logPX(x), where�X is the spectral set of the observableX̂S . In

some cases, this entropy is called the measurement entropy [19]. The Shannon entropy is no less
than the von Neumann entropy, that is,S(ρ̂S) 6 H(X̂S), which is derived from the concavity
of the functionf (x) = −x logx [20]. It has recently been found that the von Neumann
entropy in quantum information theory [21, 22] plays the same role as Shannon entropy does
in classical information theory [3, 4]. Quantum-source-coding theorem has proved that the
average number of quantum bits (two-level quantum systems) representing a pure quantum
state generated from a quantum message source is lower bounded by the von Neumann entropy
of the message source [23, 24]. Furthermore, quantum-channel-coding theorem has found that
the information can be reliably transmitted through a noisy quantum channel if the information
rate is less than the quantum channel capacity, sometimes called the Holevo bound [25–27].

In this paper, the information gain and the entropy change by a quantum measurement
process performed on a physical system will be considered in order to understand the
information-theoretical properties of quantum measurement processes. When some quantum
measurement is performed on a physical system, the quantum state of the measured physical
system inevitably changes due to the effects of the quantum measurement process. Any
quantum measurement process that does not disturb the quantum state of the measured physical
system gives us no information about the physical system. The state change of the measured
physical system induces the changes of the Shannon entropy and the von Neumann entropy.
Therefore, it is considered that there is a relation between the amount of information on the
physical system that can be obtained by the quantum measurement process and the entropy
change of the measured physical system that is caused by the quantum measurement process.
In particular, the condition for quantum measurement processes is investigated, under which
the amount of information about the physical system is equal to the decrease of the Shannon
entropy of the measured physical system. The information gain by the quantum measurement
process and the entropy change of the measured physical system are very important in quantum
information theory [21, 22]. Although optimization of quantum measurement processes
such that the information gain is maximized or the error probability is minimized has been
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investigated in detail [28–33], the relation between information gain and entropy change has
rarely been considered in quantum information theory. The relation between information gain
and quantum state disturbance, however, plays an important role in quantum cryptography
[34–36] and in error corrections of quantum computation [37–41]. Thus, the results obtained
in this paper may have some relevance to quantum information theory.

This paper is organized as follows. In section 2, we briefly summarize the basic formulation
of quantum measurement processes [42–46] in a convenient way for our purpose. The state-
reduction formula for the measured physical system and the probability distributions of the
observable of the physical system and the measurement outcome are given. In section 3,
we consider information about the physical system obtained by the quantum measurement
process and we obtain the condition under which the information gain can be represented by
the Shannon mutual entropy. In section 4, when we obtain the measurement outcome, we
compare the decrease of the Shannon entropy of the measured physical system with that of
von Neumann entropy in the quantum measurement process. In section 5, we investigate the
relation between information gain and entropy decrease and we obtain the condition under
which the amount of information obtained by the quantum measurement process becomes
equal to the decrease of the Shannon entropy of the measured physical system. In section 6, to
examine the general results obtained in sections 3–5, we consider the information gain and the
entropy change in the standard position measurement of the physical system and the photon
number measurement by means of a lossless beam splitter. In section 7, we summarize the
results obtained in this paper.

2. Quantum measurement processes and state reductions

In this section, we briefly review the state-reduction formula for a measured physical system
and the probability distribution of measurement outcomes [42–46] and then we introduce the
Shannon and von Neumann entropies in quantum measurement processes. An observableX̂S
of a physical systemS on which we perform a quantum measurement can be characterized by
a projection-valued measure (PVM) or a spectral measureX̂S(EX) [31, 47] which is expressed
in the following form

X̂S(EX) =
∫
x∈EX

dµ(x)|ψS(x)〉〈ψS(x)| ≡
∫
x∈EX

dµ(x)X̂S(x) (1)

where|ψS(x)〉 is an orthogonal eigenstate of the observableX̂S andEX is an arbitrary subset
of the spectral set�X which represents the set of all possible values of the observableX̂S . We
can formally writeX̂S(x) = δX̂S(�X)/δµ(x). The PVMX̂S(EX) satisfies the relations

X̂S(EX) > 0 X̂S(�X) = ÎS (2)

for any subsetEX ⊆ �X. HereÎS is an identity operator defined on the Hilbert spaceHS of
the physical system. Furthermore the PVM satisfies the equalities

X̂S(EX)X̂S(FX) = X̂S(EX ∩ FX) (3)

for any disjoined subsetsEX,FX ⊆ �X. We will consider quantum measurement processes for
both continuous and discrete observables in a systematic way. When we investigate a quantum
measurement process for a discrete observable, we set dµ(x) = ∑

xj∈�X δ(x − xj ) dx in
equation (1) and we obtain the PVM of the discrete observable

X̂S(EX) =
∑
xj∈EX

|ψS(xj )〉〈ψS(xj )|. (4)
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A functionf (X̂S) of the observable is a Hermitian operator defined by

f (X̂S) =
∫
x∈�X

dµ(x)f (x)|ψS(x)〉〈ψS(x)| =
∫
x∈�X

dµ(x)f (x)X̂S(x) (5)

which satisfies the eigenvalue equationf (X̂S)|ψS(x)〉 = f (x)|ψS(x)〉. If the function
f (x) is expanded asf (x) = ∑

n fnx
n, we obtain the equalityf (X̂S) =

∑
n fnX̂

n
S .

The mathematically rigorous treatment of quantum measurement processes of continuous
observables was formulated by Ozawa [44]. The information and entropy for generalized
observables which cannot be represented by PVMs will be considered in the appendix.

Suppose that before we perform the quantum measurement, the physical system to be
measured is in a quantum state described by a statistical operatorρ̂Sin which is a non-negative
and trace one operator defined on the Hilbert spaceHS . Then, the probabilityPSin(EX) that the
observableX̂S in the quantum statêρSin takes some value belonging to the setEX is given by

PSin(EX) = TrS [X̂S(EX)ρ̂Sin] =
∫
x∈EX

dµ(x)〈ψS(x)|ρ̂Sin|ψS(x)〉 (6)

where TrS stands for the trace operation over the Hilbert spaceHS of the physical system.
Here we introduce a probability function

PSin(x) = 〈ψS(x)|ρ̂Sin|ψS(x)〉 = TrS [X̂S(x)ρ̂Sin] (7)

which is formally rewritten as

PSin(x) =
δPSin(�X)
δµ(x)

= TrS

[
δX̂S(�X)
δµ(x)

ρ̂Sin

]
. (8)

It is easy to see that the probability functionPSin(x) is equal to the probability itself for a
discrete observable and to the probability density for a continuous observable. In terms of
the probability functionPSin(x), we define the Shannon entropy of the observableX̂S of the
physical system in the quantum stateρ̂Sin by

H(XSin) = −
∫
x∈�X

dµ(x)P Sin(x) logPSin(x) (9)

which becomes the differential entropy for a continuous observable

H(XSin) = −
∫
x∈�X

dx〈ψS(x)|ρ̂Sin|ψS(x)〉 log〈ψS(x)|ρ̂Sin|ψS(x)〉 (10)

and the usual entropy for a discrete observable

H(XSin) = −
∑
xj∈�X
〈ψS(xj )|ρ̂Sin|ψS(xj )〉 log〈ψS(xj )|ρ̂Sin|ψS(xj )〉. (11)

It should be noted that the differential entropy can take negative values [4]. On the other hand,
the von Neumann entropy of the physical system in the quantum stateρ̂Sin is given by

S(ρ̂Sin) = −TrS [ρ̂
S
in log ρ̂Sin]. (12)

To measure the observableX̂S of the physical system, we must first prepare a measurement
apparatusA, the initial state of which is given by a statistical operatorρ̂Ain defined on the Hilbert
spaceHA of the measurement apparatus. We then interact the measurement apparatusA with
the physical systemS to make some quantum correlation between them. Here letÛSA be a
unitary operator that describes the state of change of the physical system and the measurement
apparatus, which is caused by the system–apparatus interaction

ÛSA = T exp

{
− i

h̄

∫ τ

0
dt [Ĥ S

0 (t)⊗ ÎA + ÎS ⊗ ĤA
0 (t) + Ĥ SA

int (t)]

}
(13)



State reduction, information and entropy 1647

where Ĥ S
0 (t) and ĤA

0 (t) are the individual Hamiltonians of the physical system and the
measurement apparatus, which may depend on time andĤ SA

int (t) is the system–apparatus
interaction Hamiltonian which acts only during the interaction timeτint (0< τint < τ ). In this
equation, the symbol ‘T’ stands for taking the chronological ordering of operators. Just before
the readout of the measurement outcome, the compound quantum state of the physical system
and the measurement apparatus is given by a statistical operator

ρ̂SAout = ÛSA(ρ̂Sin ⊗ ρ̂Ain)Û†
SA. (14)

Although we have considered the case where the state change can be described by the unitary
operator, the results obtained in this paper are still valid even if the state change is given by a
completely positive and trace-preserving map [42–46] which includes a unitary transformation
as a special case. When the state changeρ̂Sin ⊗ ρ̂Ain → ρ̂SAout is a complete positive and trace-
preserving map, we can express the statistical operatorρ̂SAout by introducing an appropriate
environmental system [43]

ρ̂SAout = TrE [ÛSAE(ρ̂
S
in ⊗ ρ̂Ain ⊗ ρ̂E

in)Û
†
SAE] (15)

whereÛSAE is a unitary operator,̂ρE
in is the initial state of the environmental system and TrE is

the trace operation of the environmental system. In such a case, we substituteÛSAE, ρ̂Ain ⊗ ρ̂E
in,

ŶA ⊗ ÎE and TrAE = TrATrE for ÛSA, ρ̂Ain, ŶA and TrA in the results obtained in this paper.
We finally perform the readout of the result of the quantum measurement process. The

readout of the measurement outcome is described by a positive operator-valued measure
(POVM) defined on the Hilbert spaceHA of the measurement apparatus. Here letŶA(EY )
be the POVM that describes the readout process, the outcome of which belongs to a setEY
(⊆ �Y ), where�Y represents the set of all possible outcomes of the quantum measurement
process [30, 31]. We assume that the POVMŶA(EY ) can be expressed in the following form

ŶA(EY ) =
∫
y∈EY

dν(y)ŶA(y) (16)

which satisfies the relations

ŶA(EY ) > 0 ŶA(�Y ) = ÎA (17)

for any subsetEY ⊆ �Y . Since the operator̂YA(EY ) is a POVM but not a PVM in general, the
relation ŶA(EY )ŶA(FY ) = ŶA(EY ∩ FY ) does not necessarily hold even ifEY ∩ FY = ∅.
When we consider the quantum measurement process for a discrete observable, we set
dν(y) = ∑

yj∈�Y δ(y − yj ) dy in equation (16). If the POVMŶA(EY ) becomes a PVM,
the readout of the measurement outcome is equivalent to measuring the pointer observable
g(ŶA) of the measurement apparatus

g(ŶA) =
∫
y∈�Y

dν(y) g(y)
δŶA(�Y )
δν(y)

=
∫
y∈�Y

dν(y) g(y)ŶA(y). (18)

Here, it is important to note that there are quantum measurement processes in which we
cannot describe the readout process by any PVM. Typical examples are the photon counting
process which is a continuous quantum measurement of photon number [48–51] and the
operational phase measurement [52–54]. Therefore, we do not assume the existence of the
pointer observable of the measurement apparatus and we use the POVM to describe the readout
of the measurement outcome.

We now perform the readout of the result exhibited by the measurement apparatus just
after interaction with the physical system. Then the probability that the measurement outcome
y belongs to the setEY (⊆ �Y ) is calculated by the formula [42–46]

PAout(EY ) = TrSA[(ÎS ⊗ ŶA(EY ))ρ̂SAout] (19)
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where TrSA stands for the trace operation over the tensor product Hilbert spaceHS ⊗ HA
and the statistical operatorρ̂SAout is given by equation (14). Here we introduce the probability
functionPAout(y) by

PAout(y) = TrSA[(ÎS ⊗ ŶA(y))ρ̂SAout] =
δPAout(�Y )

δν(y)
(20)

in terms of which we obtain the output probabilityPAout(EY ) =
∫
y∈EY dν(y) PAout(y). When we

have obtained the measurement outcome which belongs to the setEY , the post-measurement
state of the physical system is calculated by means of the state-reduction formula [42–46]

ρ̂Sout(EY ) =
1

PAout(EY )

∫
y∈EY

dν(y)PAout(y)ρ̂
S
out(y) (21)

where the conditional statistical operatorρ̂Sout(y) of the physical system, called the posterior
state, is given by

ρ̂Sout(y) =
TrA[(ÎS ⊗ ŶA(y))ρ̂SAout]

TrSA[(ÎS ⊗ ŶA(y))ρ̂SAout]
(22)

where TrA is the trace operation over the Hilbert spaceHA of the measurement apparatus. In
the post-measurement stateρ̂Sout(EY ) of the physical system, the observableX̂S takes the value
x belonging to the setEX with conditional probability

PSout(EX|EY ) = TrS [X̂S(EX)ρ̂Sout(EY )] =
PSAout(EX,EY )

PAout(EY )
(23)

with

PSAout(EX,EY ) = TrSA[(X̂S(EX)⊗ ŶA(EY ))ρ̂SAout] (24)

which represents the joint probability that in the compound quantum stateρ̂SAout, the observable
X̂S takes the valuex in the setEX and the measurement outcomey belongs to the setEY . As
we have done in equations (8) and (20), we introduce the probability functionsPSAout (x, y) and
P Sout(x|y) by

PSAout (x, y) =
δ2PSAout(�X,�Y )

δµ(x)δν(y)

= TrA〈ψS(x)|[(ÎS ⊗ ŶA(y))ρ̂SAout]|ψS(x)〉 (25)

PSout(x|y) = 〈ψS(x)|ρ̂Sout(y)|ψS(x)〉 =
PSAout (x, y)

PAout(y)
. (26)

Furthermore, according to Bayes theorem [55], we obtain the posterior probability function of
the measurement apparatus

PAout(y|x) =
PSAout (x, y)

P Sout(x)
= PSout(x|y)PAout(y)

P Sout(x)
(27)

where the probability functionPSout(x) is given byPSout(x) = TrSA[(X̂S(x)⊗ ÎA)ρ̂SAout].
Using the probability functions, we introduce the Shannon entropies in the quantum

measurement process

H(XSout) = −
∫
x∈�X

dµ(x)P Sout(x) logPSout(x) (28)

H(YAout) = −
∫
y∈�Y

dν(y)PAout(y) logPAout(y) (29)
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H(XSout|YAout) = −
∫
x∈�X

dµ(x)
∫
y∈�Y

dν(y)P SAout (x, y) logPSout(x|y) (30)

H(YAout|XSout) = −
∫
x∈�X

dµ(x)
∫
y∈�Y

dν(y)P SAout (x, y) logPAout(y|x) (31)

H(XSout, Y
A
out) = −

∫
x∈�X

dµ(x)
∫
y∈�Y

dν(y)P SAout (x, y) logPSAout (x, y) (32)

which satisfy well known relations among the entropies

H(XSout, Y
A
out) = H(XSout|YAout) +H(YAout)

= H(YAout|XSout) +H(XSout). (33)

The mutual entropy between the physical system and the measurement apparatus just after
interaction is given by

H(YAout;XSout) = H(XSout) +H(YAout)−H(XSout, Y
A
out). (34)

Furthermore, we introduce the Shannon entropyH(YAin ) of the measurement apparatus before
interaction with the physical system

H(YAin ) = −
∫
y∈�Y

dν(y)PAin (y) logPAin (y) (35)

wherePAin (y) = TrA[ŶA(y)ρ̂Ain]. On the other hand, the von Neumann entropy of the post-
measurement state of the physical system is given by

S(ρ̂Sout|YAout) = −
∫
y∈�Y

dν(y)PAout(y)TrS [ρ̂
S
out(y) log ρ̂Sout(y)] (36)

where the output probability functionPAout(y) and the conditional statistical operatorρ̂Sout(y)

are given, respectively, by equations (20) and (22). Once we obtain the result of the quantum
measurement process, the decreases of the Shannon entropy and the von Neumann entropy of
the physical system are calculated by

1H(XSout, X
S
in|YAout) = H(XSin)−H(XSout|YAout) (37)

1S(ρ̂Sout, ρ̂
S
in|YAout) = S(ρ̂Sin)− S(ρ̂Sout|YAout). (38)

These quantities will be compared with the amount of information about the observable of the
physical system that can be obtained by the quantum measurement process.

3. Information gain in quantum measurement processes

In this section, we consider the information on the observableX̂S of the physical system in the
quantum statêρSin, which can be obtained by the quantum measurement process. The output
probability of the quantum measurement process is given by equation (19) or (20). Then, by
substituting equation (14) into equations (19) and (20), we obtain

PSout(EY ) = TrS [ẐS(EY )ρ̂Sin] PSout(y) = TrS [ẐS(y)ρ̂Sin] (39)

where the operatorŝZS(y) andẐS(EY ) defined on the Hilbert spaceHS of the physical system
are given, respectively, by

ẐS(y) = TrA[Û†
SA(ÎS ⊗ ŶA(y))ÛSA(ÎS ⊗ ρ̂Ain)] (40)

ẐS(EY ) = TrA[Û†
SA(ÎS ⊗ ŶA(EY ))ÛSA(ÎS ⊗ ρ̂Ain)] (41)
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where the relationsẐS(EY ) =
∫
y∈EY dν(y)ẐS(y) and ẐS(y) = δẐS(�Y )/δν(y) hold. It

is found from equation (17) and the unitarity of the operatorÛSA that the operatorẐS(EY )
becomes a POVM of the physical system, which satisfies the relations

ẐS(EY ) > 0 ẐS(�Y ) = ÎS . (42)

Here, it should be noted that although the operatorX̂S(EX) of the physical system is a PVM,
the operatorẐS(EY ) does not becomes a PVM in general. We introduce an operator of the
physical system by the following relation

g(ẐS) =
∫
y∈�Y

dν(y)g(y)ẐS(y) (43)

whereg(y) is an analytic function ofy. SinceẐS(EY ) is not a PVM,g(ẐS) does not become
Hermitian. In fact, it is easy to see thatg(ẐS) 6=

∑
n gnẐ

n
S even ifg(y) = ∑

n gny
n. The

operatorsX̂S(EX) and f (X̂S) of the physical system do not depend on the measurement
apparatus and the system–apparatus interaction whileẐS(EY ) and g(ẐS) defined on the
Hilbert spaceHS are determined only by the measurement apparatus and the system–apparatus
interaction and are independent of the intrinsic properties of the physical system. For this
reason,X̂S(EX) orf (X̂S) are referred to as the intrinsic observable of the physical system and
ẐS(EY ) or g(ẐS) are called the operational observable of the physical system [56–58]. The
operational observable is also referred to as the unsharp [59–61] or fuzzy observable [62–66].

To proceed further, we assume that the operational observableẐS(y) determined by the
quantum measurement process commutes with the intrinsic observableX̂S(x) of the physical
system, that is, [̂XS(x), ẐS(y)] = 0 for all x ∈ �X andy ∈ �Y . This commutability is
a mathematical condition imposed on quantum measurement processes and at present, the
physical implications are not clear. Under this assumption, we can express the operational
observableẐS(y) in the following form

ẐS(y) =
∫
x∈�X

dµ(x)|ψS(x)〉PSA(y|x)〈ψS(x)|

=
∫
x∈�X

dµ(x)PSA(y|x)X̂S(x) (44)

which is formally written asẐS(y) = PSA(y|X̂S) (see equation (5)). Since we haveX̂S(x) > 0,
ẐS(y) > 0 andX̂S(�X) = ẐS(�Y ) = ÎS , the kernel functionPSA(y|x) satisfies the relations

PSA(y|x) > 0
∫
y∈�Y

dν(y)PSA(y|x) = 1. (45)

Substituting equation (44) into (39), we find that the kernel functionPSA(y|x) gives the relation
between the initial probabilityPSin(x) of the physical system and the output probabilityPAout(y)

of the quantum measurement process

PAout(y) =
∫
x∈�X

dµ(x)PSA(y|x)P Sin(x). (46)

Thus, it is seen from equations (45) and (46) that the kernel functionPSA(y|x) is the conditional
probability (density) that the measurement outcome lies in the infinitesimal range around
valuey when the intrinsic observable of the physical system in the quantum stateρ̂Sin takes
a value in the infinitesimal range aroundx. More precisely, the conditional probability that
the measurement outcome belongs to the setEY (⊆ �Y ) when the intrinsic observable of the
physical system takes a value belonging to the setEX(⊆ �X) is given by

PSA(EY |EX) =
∫
x∈EX

dµ(x)
∫
y∈EY

dν(y)PSA(y|x). (47)
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For the quantum measurement processes of discrete observables, the conditional probability
PSA(yi |xj ) and the output probabilityPAout(yi) become

PSA(yi |xj ) = 〈ψS(xj )|ẐS(yi)|ψS(xj )〉 (48)

PAout(yi) =
∑
xj∈�X

PSA(yi |xj )P Sin(xj ). (49)

On the other hand, if the output probabilityPAout(y) is written in the form of equation (46),
the operational observablêZS(y) must satisfy the following relation for any initial statistical
operatorρ̂Sin

TrS

{[
ẐS(y)−

∫
x∈�X

dµ(x)PSA(y|x)X̂S(x)
]
ρ̂Sin

}
= 0 (50)

which yields equation (44). Therefore, the commutability of the intrinsic and operational
observables is necessary and sufficient for the existence of the conditional probabilityPSA(y|x)
in the quantum measurement process.

According to Bayes theorem [55], we obtain the posterior probabilityP̃SA(x|y) that the
intrinsic observable of the physical system in the initial quantum stateρ̂Sin takes a valuex when
the measurement outcomey was given

P̃SA(x|y) = PSA(y, x)

PAout(y)
= PSA(y|x)P Sin(x)

PAout(y)
(51)

wherePSA(y, x) is the joint probability of the intrinsic observable of the physical system and
the outcome of the quantum measurement process. Using these probabilities, the joint and
conditional entropies in the quantum measurement process are given, respectively, by

H(YAout, X
S
in) = −

∫
x∈�X

dµ(x)
∫
y∈�Y

dν(y)PSA(y, x) logPSA(y, x) (52)

H(YAout|XSin) = −
∫
x∈�X

dµ(x)
∫
y∈�Y

dν(y)PSA(y, x) logPSA(y|x) (53)

H(XSin|YAout) = −
∫
x∈�X

dµ(x)
∫
y∈�Y

dν(y)PSA(y, x) log P̃SA(x|y) (54)

which satisfies the relations

H(YAout, X
S
in) = H(YAout|XSin) +H(XSin)

= H(XSin|YAout) +H(YAout) (55)

whereH(XSin) andH(YAout) are given, respectively, by equations (9) and (29). The information
about the intrinsic observable of the physical system in the initial quantum stateρ̂Sin, which can
be obtained by the quantum measurement process, is equivalent to the information transmitted
from the physical system in the initial quantum stateρ̂Sin to the measurement apparatus in the
output stateρ̂SAout by unitary transformation̂USA. This means that the quantum measurement
process can be considered a quantum communication channel between the physical system to
be measured and the measurement apparatus. Thus, when the relations given by equations (45)
and (46) hold, we can represent the amount of information about the intrinsic observable of
the physical system by the Shannon mutual entropy

I (YAout;XSin) = H(YAout) +H(XSin)−H(YAout, X
S
in). (56)

Therefore, we can summarize the result in the following theorem.
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Theorem 1. If the intrinsic observablêXS(x) of the physical system to be measured commutes
with the operational observablêZS(y) determined by the quantum measurement process, that
is, [X̂S(x), ẐS(y)] = 0 for all x ∈ �X and y ∈ �Y , the amount of information about the
intrinsic observable of the physical system in the quantum stateρ̂Sin, which can be obtained by
the quantum measurement process, is given by the Shannon mutual entropy

I (YAout;XSin) =
∫
x∈�X

dµ(x)
∫
y∈�Y

dν(y)PSA(y|x)P Sin(x) log

[
PSA(y|x)
PAout(y)

]
= H(YAout) +H(XSin)−H(YAout, X

S
in)

= H(YAout)−H(YAout|XSin)
= H(XSin)−H(XSin|YAout) (57)

where the initial probabilityPSin(x) of the physical system and the output probabilityPAout(y)

of the measurement apparatus are given, respectively, by equations (8) and (20) and the
conditional probabilityPSA(y|x) is determined by equation (44).

Thus far we have not imposed any restriction on the quantum measurement process, except
for the commutativity of the intrinsic and operational observables of the physical system,
[X̂S(x), ẐS(y)] = 0. In some cases,the probability reproducibility condition[61, 67, 68]
is introduced for investigating the properties of quantum measurement processes and their
interpretation. In our notations, this condition is represented by the following relation

TrS [X̂S(x)ρ̂Sin] = TrS [ẐS(g(x))ρ̂Sin] (58)

whereg(y) is some analytic function which connects the measurement outcomeywith the value
x of the intrinsic observable of the physical system. Of course, this relation is equivalent to the
equalityPSin(x) = PAout(g(x)). Furthermore, the equalities dµ(g−1(y)) = dν(y) andg(�X) =
�Y are required, from which we have the consistency for the normalization conditions

1=
∫
x∈�X

dµ(x)P Sin(x) =
∫
x∈�X

dµ(x)PAout(g(x)) =
∫
y∈g(�X)

dµ(g−1(y))PAout(y)

=
∫
y∈�Y

dν(y)PAout(y). (59)

Since the relation given by equation (58) holds for any statistical operatorρ̂Sin of the phys-
ical system, we obtain the equalitŷXS(x) = ẐS(g(x)) of the intrinsic and operational
observables, which indicates that the conditional probability in equation (44) is given by
PSA(y|x) = δ(y − g(x)) or PSA(y|x) = δy,g(x). Thus, it is found that the probability re-
producibility condition is stronger than the commutability of the intrinsic and operational
observables.

Since the differential entropy does not take a finite value forδ-function probability
densities, we consider the quantum measurement process of a discrete observable that satisfies
the probability reproducibility condition. In this case, the information gainI (YAout;XSin) is
calculated to be

I (YAout;XSin) =
∑
xj∈�X

∑
yk∈�Y

PSA(yk|xj )P Sin(xj ) log

[
PSA(yk|xj )
PAout(yk)

]
= −

∑
xj∈�X

PAout(g(xj )) logPAout(g(xj ))

= −
∑
yk∈�Y

PAout(yk) logPAout(yk) = H(YAout)

= −
∑
xj∈�X

P Sin(xj ) logPSin(xj ) = H(XSin) (60)
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which is equivalent toH(XSin|YAout) = H(YAout|XSin) = 0. This result means that complete
information can be obtained from the measurement outcomes and the information gain is
given by the Shannon entropy of the physical system in the quantum stateρ̂Sin. Therefore,
it is found that under the probability reproducibility condition, the Shannon entropy of the
physical system becomes equal to the amount of information which we can obtain by the
quantum measurement process. Furthermore, since the von Neumann entropy is no greater
than the Shannon entropy, the probability reproducibility condition yields a relation among
the information gain, the Shannon and von Neumann entropies

I (YAout;XSin) = H(XSin) > S(ρ̂Sin) (61)

I (YAout;XSin) = H(YAout) > S(ρ̂Aout) (62)

whereS(ρ̂Aout) is the von Neumann entropy of the measurement apparatus in the quantum state
ρ̂Aout = TrSρ̂SAout.

4. Entropy change in quantum measurement processes

When we perform a quantum measurement on a physical system to obtain information about
an intrinsic observable, the quantum state of the measured physical system changes due to the
effect of the quantum measurement process. Such a state change induces a decrease of the
entropy of the measured physical system since the information about the physical system is
obtained and the uncertainty of the physical system is reduced. When we obtain the result
of the quantum measurement process, the decreases of the Shannon entropy and the von
Neumann entropy of the physical system are given, respectively, by equations (37) and (38).
In this section, we compare the decrease of the Shannon entropy with that of the von Neumann
entropy. Here, we consider quantum measurement processes of only discrete observables.

We first consider the case where the initial quantum state of the physical system is a
statistical mixture of the eigenstates of the intrinsic observable, where the statistical operatorρ̂Sin
commutes with the intrinsic observablêXS(xj ) of the physical system, that is [ρ̂Sin, X̂S(xj )] = 0
for all xj ∈ �X. In this case, we can represent the statistical operatorρ̂Sin in the following form

ρ̂Sin =
∑
xj∈�X

P Sin(xj )|ψS(xj )〉〈ψS(xj )| = PSin(X̂S) (63)

wherePSin(xj ) > 0 and
∑

xj∈�X P
S
in(xj ) = 1. Since|ψS(xj )〉 is the orthonormal eigenstate

state, the Shannon entropyH(XSin) and the von Neumann entropyS(ρ̂Sin) of the physical system
in the initial quantum statêρSin are equal

S(ρ̂Sin) = H(XSin) = −
∑
xj∈�X

P Sin(xj ) logPSin(xj ). (64)

On the other hand, when we obtain the measurement outcome, the von Neumann entropy
S(ρ̂Sout|YAout) of the physical system in the post-measurement state can be evaluated as follows

S(ρ̂Sout|YAout) = −
∑
yk∈�Y

PAout(yk)TrS [ρ̂
S
out(yk) log ρ̂Sout(yk)]

6 −
∑
yk∈�Y

PAout(yk)
∑
xj∈�X

P Sout(xj |yk) logPSout(xj |yk)

= −
∑
yk∈�Y

∑
xj∈�X

P SAout (xj , yk) logPSout(xj |yk)

= H(XSout|YAout) (65)
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wherePSout(xj |yk) = 〈ψS(xj )|ρ̂Sout(yk)|ψS(xj )〉 and we have used equations (25) and (26).
The inequality on the right-hand side of this equation is ensured by the Jensen inequality
[4] or equivalently by the concavity of the entropy function [f (x) = −x logx] [20]. Using
equations (64) and (65), we obtain the inequality

1S(ρ̂Sout, ρ̂
S
in|YAout) = S(ρ̂Sin)− S(ρ̂Sout|YAout)

> H(XSin)−H(XSout|YAout)

= 1H(XSout, X
S
in|YAout). (66)

Thus if the commutativity [̂ρSin, X̂S(xj )] = 0 holds for allxj ∈ �X, the decrease of the von
Neumann entropy of the physical system is no less than that of the Shannon entropy in the
quantum measurement process of the discrete observable.

We next consider the case where the physical system after the measurement is a statistical
mixture of the eigenstates of the intrinsic observable, where the conditional statistical operator
ρ̂Sout(yk) of the post-measurement state of the physical system commutes with the intrinsic
observableX̂S(xj ) of the physical system, that is [ρ̂Sout(yk), X̂S(xj )] = 0 for all xj ∈ �X and
yk ∈ �Y . Then, the conditional statistical operatorρ̂Sout(yk) can be expressed as

ρ̂Sout(yk) =
∑
yk∈�Y

P Sout(xj |yk)|ψS(xj )〉〈ψS(xj )| = PSout(X̂S |yk) (67)

where PSout(xj |yk) > 0 and
∑

xj∈�X P
S
out(xj |yk) = 1. In this case, it is easy to see

from equations (30) and (36) that the following equality is established after the quantum
measurement process

S(ρ̂Sout|YAout) = H(XSout|YAout) = −
∑
yk∈�Y

∑
xj∈�X

P SAout (xj , yk) logPSout(xj |yk). (68)

Using the fact that the inequalityS(ρ̂Sin) 6 H(XSin) holds in general, we find that decreases of
the von Neumann entropy of the physical system is no greater than that of the Shannon entropy
in the quantum measurement process of the discrete observable

1S(ρ̂Sout, ρ̂
S
in|YAout) 6 1H(XSout, X

S
in|YAout). (69)

Therefore, we can summarize the results in the following theorem.

Theorem 2. In quantum measurement processes of discrete observables, when we obtain the
measurement outcome, decreases of the Shannon entropy and the von Neumann entropy of the
measured physical system satisfy the inequality

1S(ρ̂Sout, ρ̂
S
in|YAout) 6 1H(XSout, X

S
in|YAout) (70)

if the conditional statistical operator̂ρSout(yk) of the post-measurement state of the physical
system commutes with the intrinsic observableX̂S(xj ) and

1S(ρ̂Sout, ρ̂
S
in|YAout) > 1H(XSout, X

S
in|YAout) (71)

if the initial statistical operatorρ̂Sin of the physical system to be measured commutes with the
intrinsic observableX̂S(xj ). In equations (70) and (71), the equality holds if the commutativity
[ρ̂Sout(yk), X̂S(xj )] = [ρ̂Sin, X̂S(xj )] = 0 is established for allxj ∈ �X andyk ∈ �Y .

Finally we remark that the change of von Neumann entropy of the physical system in
quantum measurement processes has been investigated by Groenewold, Lindblad and Ozawa
[69–72].
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5. Information gain and entropy change

In section 3, we investigated the information gainI (YAout;XSin) in the quantum measurement
process and in section 4, we considered the entropy decreases1H(XSout, X

S
in|YAout) and

1S(ρ̂Sout, ρ̂
S
in|YAout) of the physical system that are caused by the quantum measurement process.

In this section, we therefore investigate the relation between the information gainI (YAout;XSin)
and the entropy decrease1H(XSout, X

S
in|YAout). For this purpose, we first recall that the condition

under which the amount of information obtained by the quantum measurement process can be
represented by the Shannon mutual entropy is the commutativity of the intrinsic and operational
observables of the physical system, that is [X̂S(x), ẐS(y)] = 0 for all x ∈ �X andy ∈ �Y .
Then from equations (40) and (44) we can write this condition as

TrA[Û†
SA(ÎS ⊗ ŶA(y))ÛSA(ÎS ⊗ ρ̂Ain)] =

∫
x∈�X

dµ(x)PSA(y|x)X̂S(x). (72)

By using the completeness relation
∫
x∈�X dµ(x)X̂S(x) = ÎS , this relation becomes∫

x∈�X
dµ(x)TrA[Û†

SA(X̂S(x)⊗ ŶA(y))ÛSA(ÎS ⊗ ρ̂Ain)] =
∫
x∈�X

dµ(x)PSA(y|x)X̂S(x). (73)

To obtain the relation between information gain and entropy decrease, we further impose a
condition on the quantum measurement process. The condition is that the integrand on the
left-hand side of equation (73) is equivalent to that on the right-hand side, which can be given
in the following form

TrA[Û†
SA(X̂S(x)⊗ ŶA(y))ÛSA(ÎS ⊗ ρ̂Ain)] = PSA(y|f (x; y))X̂S(f (x; y)) (74)

wheref (x; y) is a function ofx that in general depends ony and the spectral set�X of the
intrinsic observable, the measure dµ(x) and the conditional probabilityPSA(y|x) satisfy the
relation∫
x∈�X

dµ(x)PSA(y|x)F (x) =
∫
x∈�X

dµ(x)PSA(y|f (x; y))F (f (x; y)). (75)

HereF(x) is an arbitrary non-singular function ofx. Of course, the condition given by
equations (74) and (75) is stronger than that given by equation (73). In fact, it is easy to see
that equation (73) holds if equations (74) and (75) are satisfied. Furthermore, equation (74)
means that except for the conditional probability, the intrinsic observable is transformed
as X̂S(x) → X̂S(x ′) with x ′ = f (x; y) by the dual map of the completely positive map
ρ̂Sin → ρ̂Sout(y).

As an example that satisfies the relations given by equations (74) and (75), let us consider a
quantum non-demolition measurement of the intrinsic observableX̂S(x) of the physical system
[73–75]. Here we assume that the system–apparatus interaction is sufficiently strong so that
‖Ĥ SA

int (t)‖ � ‖Ĥ S
0 (t)‖ and‖Ĥ SA

int (t)‖ � ‖ĤA
0 (t)‖, where‖X̂‖ is a norm of operator̂X. In

this case, the PVMX̂S(x), the POVMŶA(y) and the unitary operator̂USA satisfy

[X̂S(x), ÛSA] = 0 [ŶA(y), ÛSA] 6= 0. (76)

It is easy to see from equations (40) and (76) that the commutativity of the intrinsic
and operational observables, [X̂S(x), ẐS(y)] = 0, holds for the quantum non-demolition
measurement. Then, we can calculate the left-hand side of equation (74) as follows

TrA[Û†
SA(X̂S(x)⊗ ŶA(y))ÛSA(ÎS ⊗ ρ̂Ain)] = TrA[Û†

SA(ÎS ⊗ ŶA(y))ÛSA(ÎS ⊗ ρ̂Ain)]X̂S(x)
=
∫
x ′∈�X

dµ(x ′)PSA(y|x ′)X̂S(x ′)X̂S(x)

= PSA(y|x)X̂S(x) (77)
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where we have used equation (72) and the fact that the intrinsic observableX̂S(x)of the physical
system is an orthogonal projector. This result shows that the functionf (x; y) in equation (74) is
given byf (x; y) = x for the quantum non-demolition measurement. Therefore, any quantum
non-demolition measurement of the intrinsic observableX̂S(x) of the physical system satisfies
the relations given by equations (74) and (75).

To investigate the entropy decrease of the physical system that is caused by the
quantum measurement process, we calculate the joint probability functionPSAout (x, y) given by
equation (25) under condition (74)

P SAout (x, y) = 〈ψS(x)|TrA[(ÎS ⊗ ŶA(y))ρ̂SAout]|ψS(x)〉
= TrSA[(X̂S(x)⊗ ŶA(y))ÛSA(ρ̂Sin ⊗ ρ̂Ain)Û†

SA]

= TrSA[Û†
SA(X̂S(x)⊗ ŶA(y))ÛSA(ρ̂Sin ⊗ ρ̂Ain)]

= PSA(y|f (x; y))TrS [X̂S(f (x; y))ρ̂Sin]

= PSA(y|f (x; y))〈ψS(x)|ρ̂Sin|ψS(x)〉|x→f (x;y)
= PSA(y|f (x; y))P Sin(f (x; y)). (78)

If the functionf (x; y) is independent ofy, this result yields the equalityPSout(x) = PSin(f (x)).
This means that when we do not obtain the measurement outcome, the probability of the
observableX̂S in the post-measurement state of the physical system is equal to that of the
observablef (X̂S) in the initial quantum state of the physical system. Using equations (75)
and (78), we can calculate the joint entropyH(XSout, Y

A
out) as follows

H(XSout, Y
A
out) = −

∫
x∈�X

dµ(x)
∫
y∈�Y

dν(y)P SAout (x, y) logPSAout (x, y)

= −
∫
x∈�X

dµ(x)
∫
y∈�Y

dν(y)PSA(y|f (x; y))P Sin(f (x; y))

× log[PSA(y|f (x; y))P Sin(f (x; y))]
= −

∫
x∈�X

dµ(x)
∫
y∈�Y

dν(y)PSA(y|x)P Sin(x) log[PSA(y|x)P Sin(x)]

= H(YAout|XSin) +H(XSin)

= H(XSin) +H(YAout)− I (YAout;XSin) (79)

where we have used equation (57). It should be noted that this relation is different from the
well known relation

H(XSout, Y
A
out) = H(XSout) +H(YAout)− I (XSout;YAout). (80)

From equations (37) and (79), the entropy decrease of the physical system in the quantum
measurement process becomes

1H(XSout, X
S
in|YAout) = H(XSin)−H(XSout|YAout)

= H(XSin) +H(YAout)−H(XSout, Y
A
out)

= I (YAout;XSin). (81)

Therefore we obtain the following theorem.

Theorem 3. If the quantum measurement process satisfies the condition given by
equations (74) and (75), the amount of information about the intrinsic observableX̂S(x) of the
physical system in the quantum stateρ̂Sin, which can be obtained by the quantum measurement
process, is equal to the decrease of the Shannon entropy of the measured physical system

1H(XSout, X
S
in|YAout) = I (YAout;XSin). (82)
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In particular, this equality always holds for any quantum non-demolition measurement of the
intrinsic observable of the physical system.

It is important to note that the condition of the theorem is sufficient, but not necessary, to
hold equality (82). To see this, we consider the case that the intrinsic observableX̂S(x) of the
physical system has a discrete and non-degenerate spectrum and the quantum measurement
process satisfies the probability reproducibility condition (58). It should be noted that the
probability reproducibility condition (58) does not guarantee the condition of the theorem. In
this case, we obtain the relation from equations (26) and (78)

P Sout(x|y) = 〈ψS(x)|ρ̂Sout(y)|ψS(x)〉

= δy,g(f (x;y)) P
S
in(f (x; y))
PAout(y)

= δy,g(f (x;y)) (83)

where we have usedPSA(y|x) = δy,g(x) andPSin(x) = PAout(g(x)). Since |ψS(x)〉 is the
eigenstate of the discrete and non-degenerate observable, equationy = g(f (x; y)) has a
unique solutionx̃(y) for given y. Thus, we obtainρ̂Sout(y) = |ψS(x̃(y))〉〈ψS(x̃(y))| from
equation (83). This result indicates that after the measurement outcome was obtained,
both the Shannon entropy and von Neumann entropy of the physical system vanish, that
isH(XSout|YAout) = S(ρ̂Sout|YAout) = 0. This is consistent with the result obtained in section 3 that
when the quantum measurement process satisfies the probability reproducibility condition,
complete information can be obtained from the measurement outcomes. In this case, since we
have1H(XSout, X

S
in|YAout) = H(XSin), equality (82) holds.

Combining theorem 3 with theorem 2, we find that if the quantum measurement process
of a discrete observable satisfies the relations given by equations (74) and (75), the amount
of information I (YAout;XSin) which can be obtained by the quantum measurement process,
decreases of the Shannon entropy and the von Neumann entropy,1H(XSout, X

S
in|YAout) and

1S(ρ̂Sout, ρ̂
S
in|YAout), of the measured physical system satisfy

1S(ρ̂Sout, ρ̂
S
in|YAout) 6 1H(XSout, X

S
in|YAout) = I (YAout;XSin) (84)

if the conditional statistical operator̂ρSout(yk) of the post-measurement state of the physical
system commutes with the intrinsic observableX̂S(xj ) and

1S(ρ̂Sout, ρ̂
S
in|YAout) > 1H(XSout, X

S
in|YAout) = I (YAout;XSin) (85)

if the initial statistical operatorρ̂Sin of the physical system commutes with the intrinsic
observableX̂S(xj ). Furthermore, if the quantum measurement process satisfies the probability
reproducibility condition, the relations given by equations (84) and (85), respectively, become
S(ρ̂Sin) 6 H(XSin) = I (YAout;XSin) andS(ρ̂Sin) = H(XSin) = I (YAout;XSin).

Before closing this section, we consider the case where the physical system before the
interaction with the measurement apparatus is in an eigenstate of the intrinsic observable with
eigenvaluex̃, that isρ̂Sin = |ψS(x̃)〉〈ψS(x̃)|, where we assume a discrete and non-degenerate
observable. In this case, since we obtainH(XSin) = 0 andPAout(yk) = PSA(yk|x̃) from
equations (9) and (46), it is seen from equation (57) that the information gain becomes zero,
that isI (YAout;XSin) = 0. Therefore, when the initial quantum state of the physical system
is the eigenstate of the intrinsic observable with discrete and non-degenerate spectrum, the
information gain becomes zero. This result is consistent with our intuition that if we have
complete knowledge of the intrinsic observable of the physical system, we cannot obtain any
further information about it, even though we perform any quantum measurement on the physical
system. Furthermore, if the quantum measurement process satisfies the condition given by
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equations (74) and (75), we obtain the relationH(XSout, Y
A
out) = H(YAout) andH(XSout|YAout) = 0

sinceH(XSin) = I (YAout;XSin) = 0. Thus, we find that the entropy decrease of the measured
physical system becomes zero, that is1H(XSout, X

S
in|YAout) = 0.

6. Examples of quantum measurement processes

In this section, we consider two simple examples of quantum measurement processes to
examine the general results obtained in sections 3–5. One is the standard position measurement
[18] and the other is the photon number measurement by means of a lossless beam splitter
[76, 77]. We obtain the information gain and the entropy change in these quantum measurement
processes.

6.1. Standard position measurement

In position measurement of the physical system, the intrinsic observable of the physical system
and the PVM of the measurement apparatus are given, respectively, byX̂S(x) = |xS〉〈xS | and
ŶA(y) = |yA〉〈yA|, where|xS〉 and|yA〉 are the eigenstates of the position operatorsx̂S and
x̂A of the physical system and the measurement apparatus, satisfying the eigenvalue equations
x̂S |xS〉 = x|xS〉 and x̂A|yA〉 = y|yA〉. The position operator̂xA corresponds to the pointer
observable of the measurement apparatus. In this case, the sets�X and�Y are the set of all
real numbers. The unitary operator that describes the state change due to interaction between
the physical system and the measurement apparatus in the measurement process is assumed to
be

ÛSA = exp(−ix̂S ⊗ p̂A) (86)

wherep̂A is the momentum operator of the measurement apparatus, canonically conjugate to
the position operator̂xA and we setλτint/h̄ = 1 with the coupling constantλ, for the sake of
simplicity. Then the compound quantum stateρ̂SAout of the physical system and the measurement
apparatus just after the interaction becomes

ρ̂SAout =
∫ ∞
−∞

dx
∫ ∞
−∞

dx ′
∫ ∞
−∞

dy
∫ ∞
−∞

dy ′〈xS |ρ̂Sin|x ′S〉〈yA|ρ̂Ain|y ′A〉
×|xS〉〈x ′S | ⊗ |xA + yA〉〈x ′A + y ′A|. (87)

Hence, we can obtain the conditional statistical operatorρ̂Sout(r) of the physical system and the
output probability densityPAout(r) of the measurement apparatus

ρ̂Sout(r) =
∫ ∞
−∞

dx
∫ ∞
−∞

dy|xS〉
[ 〈xS |ρ̂Sin|yS〉〈rA − xA|ρ̂Ain|rA − yA〉

PAout(r)

]
〈yS | (88)

PAout(r) =
∫ ∞
−∞

dx〈rA − xA|ρ̂Ain|rA − xA〉PSin(x) (89)

wherePSin(x) = 〈xS |ρ̂Sin|xS〉 is the position probability density of the physical system in the
initial quantum statêρSin. The operational observablêZS(r) of the physical system that is
determined by the position measurement is obtained from equation (40)

ẐS(r) =
∫ ∞
−∞

dx|xS〉〈rA − xA|ρ̂Ain|rA − xA〉〈xS |

=
∫ ∞
−∞

dx〈rA − xA|ρ̂Ain|rA − xA〉X̂S(x) (90)
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which indicates that the conditional probability densityPSA(y|x) in the position measurement
process is given by

PSA(y|x) = 〈yA − xA|ρ̂Ain|yA − xA〉 = PAin (y − x) (91)

wherePAin (y) = 〈yA|ρ̂Ain|yA〉 is the initial probability density of the measurement apparatus.
It is easy to see from equation (90) that the intrinsic position observable commutes with the
operational position observable, namely,(X̂S(x), ẐS(r)) = 0 for all x and r. Therefore,
theorem 1 holds for the standard position measurement of the physical system.

The amount of informationI (YAout;XSin) about the intrinsic position observable of the
physical system is calculated from equations (57) and (91)

I (YAout;XSin) =
∫ ∞
−∞

dx
∫ ∞
−∞

dyPSA(x|y)P Sin(y) log

[
PSA(x|y)
PAout(x)

]
= H(YAout) +

∫ ∞
−∞

dx
∫ ∞
−∞

dyPAin (x − y)P Sin(y) logPAin (x − y)

= H(YAout) +
∫ ∞
−∞

dx
∫ ∞
−∞

dyPAin (x)P
S
in(y) logPAin (x)

= H(YAout)−H(YAin ). (92)

This result indicates that the amount of information on the position observable of the physical
system is equal to the entropy increase of the measurement apparatus. We also obtain
the equalityH(YAin ) = H(YAout|XSin) which means that when we have complete knowledge
of the position observable of the physical system, the uncertainty of the result of the
position measurement is equal to the uncertainty of the initial position of the measurement
apparatus.

We next examine the relations given by equations (74) and (75). For the position
measurement, it is easy to calculate the left-hand side of equation (74)

TrA[Û†
SA(X̂S(x)⊗ ŶA(y))ÛSA(ÎS ⊗ ρ̂Ain)] = 〈yA| exp(−ixp̂A)ρ̂

A
in exp(ixp̂)|yA〉|xS〉〈xS |

= 〈yA − xA|ρ̂Ain|yA − xA〉|xS〉〈xS |
= PSA(y|x)X̂S(x) (93)

where we have used equation (91). This result indicates that the position measurement of
the physical system satisfies the relations given by equations (74) and (75) withf (x; y) =
x. Thus, it is found from theorem 3 and equation (92) that the amount of information
I (YAout;XSin) about the position observable of the physical system is equal to the decrease
1H(XSout, X

S
in|YAout) of the Shannon entropy of the physical system and to the increase

H(YAout) − H(YAin ) of the Shannon entropy of the measurement apparatus in the position
measurement.

6.2. Photon number measurement

We next consider the photon number measurement of the physical system by means of a
lossless beam splitter [76, 77]. In this case, the intrinsic observable of the physical system and
the PVM of the measurement apparatus becomesX̂S(n) = |nS〉〈nS | andŶA(n) = |nA〉〈nA|,
where|nS〉 and|nA〉 are the Fock states of the physical system and the measurement apparatus.
The pointer observable is the photon number operator of the measurement apparatus. The
unitary operator that describes the state change due to the system–apparatus interaction (beam
splitting) is given by

ÛSA = exp[−θ(â†
S ⊗ âA − âS ⊗ â†

A)] (94)
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whereâS andâ†
S (âA andâ†

A) are the annihilation and creation operators of the physical system
(the measurement apparatus). Furthermore, the initial state of the measurement apparatus
is assumed to be the vacuum stateρ̂Ain = |0A〉〈0A|. Then the compound quantum state
ρ̂SAout of the physical system and the measurement apparatus just after interaction becomes
[76, 77]

ρ̂SAout =
∞∑
m=0

∞∑
n=0

[
1

m!n!

(
R
T

)m+n]1/2

âmS T
1
2 â

†
S âS ρ̂SinT

1
2 â

†
S âS â

†n
S ⊗ |mA〉〈nA| (95)

where T = cos2 θ andR = sin2 θ are the transmittance and reflectance of the beam
splitter. The conditional statistical operator̂ρSout(m) of the physical system and the
output probabilityPAout(m) of the photon number measurement are given, respectively,
by

ρ̂Sout(m) =
âmS T

1
2 â

†
S âS ρ̂SinT

1
2 â

†
S âS â

†m
S

TrS [âmS T
1
2 â

†
S âS ρ̂SinT

1
2 â

†
S âS â

†m
S ]

(96)

PAout(m) =
∞∑
n=m

n!

m!(n−m)!R
mT n−mP Sin(n) (97)

where PSin(n) = 〈nS |ρ̂Sin|nS〉 is the photon number probability of the physical
system in the initial quantum statêρSin. The operational observable of the
physical system defined by this photon number measurement is obtained from
equation (40)

ẐS(m) =
∞∑
n=m
|nS〉 n!

m!(n−m)!R
mT n−m〈nS |

=
∞∑
n=0

n!

m!(n−m)!R
mT n−mX̂S(n) (98)

which means that the conditional probabilityPSA(m|n) is given by

PSA(m|n) = n!

m!(n−m)!R
mT n−m. (99)

In the second equality of equation (98), we have used the fact thatn! → ∞ (1/n! → 0)
if n is a negative integer. It is easy to see from equation (98) that the operational photon
number observablêZS(m) commutes with the intrinsic photon number observableX̂S(n).
Therefore, theorem 1 holds for the photon number measurement by means of the lossless
beam splitter. Here we remark that the operational observable in the homodyne detection
was obtained by Banaszek and Wódkiewicz [57] and their result shows the commutability
of the intrinsic and operational observables. Thus theorem 1 is established in homodyne
detection.

To examine the sufficient condition for theorem 3, we first calculate the left-hand side of
equation (74)

TrA[Û†
SA(X̂S(n)⊗ ŶA(m))ÛSA(ÎS ⊗ |0A〉〈0A|)] =

1

m!

(
R
T

)m
T

1
2 â

†
S âS â

†m
S |nS〉〈nS |âmS T

1
2 â

†
S âS

= (m + n)!

m!n!
RmT n|mS + nS〉〈mS + nS |

= PSA(m|m + n)X̂S(m + n) (100)
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where we have used equation (99). Thus, we have found that the relation given by equation (74)
is satisfied and the functionf (x; y) from equation (74) is given byf (x; y) = x + y.
Furthermore, we can easily verify the relation given by equation (75)

∞∑
n=0

PSA(m|n +m)F(m + n) =
∞∑
n=0

(m + n)!

m!n!
RmT nF (m + n)

=
∞∑
n=m

n!

m!(n−m)!R
mT n−mF(n)

=
∞∑
n=0

n!

m!(n−m)!R
mT n−mF(n)

=
∞∑
n=0

PSA(m|n)F (n). (101)

This result means that the relation given by equation (75) is satisfied in the photon number
measurement. Therefore, since theorem 3 holds, we see that the amount of information
I (YAout;XSin) on the photon number of the physical system is equal to the entropy decrease
1H(XSout, X

S
in|YAout) of the physical system in the photon number measurement. Although we

have to consider the photon number measurement by means of the beam splitter, the same results
can also be obtained in the photon number measurement with the non-degenerate parametric
amplifier, where the unitary operatorÛSA is given byÛSA = exp(−θ(â†

S ⊗ â†
A− âS ⊗ âA)). In

this case we havef (x; y) = x − y in equation (74).
We next consider changes of the Shannon entropy and the von Neumann entropy in the

photon number measurement by means of the lossless beam splitter. Since the conditional
statistical operator̂ρSout(m) of the post-measurement state of the physical system is given by
equation (96), we obtain the equality1S(ρ̂Sout, ρ̂

S
in|YAout) = 1H(XSout, X

S
in|YAout) if the initial

quantum stateρ̂Sin of the physical system is diagonal with respect to the photon number
eigenstate|nS〉, that isρ̂Sin =

∑∞
n=0P

S
in(n)|nS〉〈nS |, since the conditional statistical operator

ρ̂Sout(m) becomes diagonal if̂ρSin is diagonal with respect to the photon number eigenstate|nS〉.
On the other hand, when the initial quantum state of the physical system is a superposition of
vacuum and one-photon states [78]

ρ̂Sin = |ψS
in〉〈ψS

in| |ψS
in〉 = a|0S〉 + b|1S〉 (102)

with |a|2 + |b|2 = 1, the conditional statistical operator of the physical system is given by

ρ̂Sout(0) =
1

|a|2 + T |b|2 |ψ
S
out〉〈ψS

out| ρ̂Sout(1) = |0S〉〈0S | (103)

where|ψS
out〉 = a|0S〉 + T 1/2b|1S〉. Furthermore, the output probability of the measurement

apparatus becomes

PAout(0) = |a|2 + T |b|2 PAout(1) = R|b|2. (104)

Since both the input and conditional output states,ρ̂Sin andρ̂Sout(m), of the physical system are
pure, we obtain

S(ρ̂Sin) = S(ρ̂Sout|YAout) = 1S(ρ̂Sout, ρ̂
S
in|YAout) = 0. (105)

The decrease of Shannon entropy of the measured physical system is calculated to be

1H(XSout, X
S
in|YAout) = −(1−R|a|2) log(1−R|a|2)
−R|b|2 log |b|2 + (1−R)|b|2 log(1−R) (106)



1662 M Ban

which yields the inequality1H(XSout, X
S
in|YAout) > 1S(ρ̂Sout, ρ̂

S
in|YAout) = 0, where the equality

holds forT = 0 orT = 1.
Finally we remark that the two quantum measurement processes considered here do not

satisfy the probability reproducibility condition. In fact, from equations (90) and (98), the
probability reproducibility condition (58) is expressed as

〈fA(x)− yA|ρ̂Ain|fA(x)− yA〉 = δ(x − y) (107)

for the position measurement and
m!

g(n)![m− g(n)]!R
g(n)T m−g(n) = δm,n (108)

for the photon-number measurement, wherefA(x) is some real-valued function andg(n) is a
non-negative integer. For any physical stateρ̂Ain of the measurement apparatus, (107) does not
hold, whatever functionfA(x) is. Furthermore, it is easy to see that (108) is not satisfied for
any functiongA(n).

7. Summary

In this paper we have considered the amount of information which we can obtain by means of
the quantum measurement process of the intrinsic observable of the physical system and we
have also investigated the entropy change of the measured physical system that is caused
by the quantum measurement process. We first obtained the condition under which the
information gain can be represented by Shannon mutual entropy. The condition is that the
intrinsic observable of the measured physical system commutes with the operational observable
defined by the quantum measurement process. As the example that satisfies this condition, the
standard position measurement and the photon number measurement by means of a lossless
beam splitter have been considered. Of course, there are many other quantum measurement
processes in which the condition holds [79]. We next investigated the entropy decreases of the
physical system that are caused by quantum measurement processes of discrete observables.
We have found that the decrease of the von Neumann entropy is no greater than that of the
Shannon entropy when the conditional statistical operator of the post-measurement state of the
physical system commutes with the intrinsic observable. On the other hand, a decrease of the
von Neumann entropy is no less than that of the Shannon entropy when the statistical operator
of the initial quantum state of the physical system commutes with the intrinsic observable.
Then, we have compared the amount of information which we can obtain by the quantum
measurement process with the entropy decrease of the measured physical system. We have
found that the conditions for information gain and entropy decrease are equal. In particular, any
quantum non-demolition measurement satisfies this condition. The general results obtained in
this paper are summarized in theorems 1, 2 and 3. In this paper, we have confined ourselves
to considering the cases where the intrinsic observable of the physical system is represented
by the PVM. When the intrinsic observable is given by the POVM, the results obtained in this
paper are slightly modified (see the appendix).

Appendix. Information and entropy for generalized observables

In this appendix, we consider the relation between the information gain and the entropy decrease
in a quantum measurement process for a generalized intrinsic observable of the physical system,
where we assume that the generalized observable can be represented by

X̂S(EX) =
∫
x∈EX

dµ(x)X̂S(x) (A.1)
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whereX̂S(x) is not an orthogonal projector. Note that the generalized observable satisfies
equation (2) but not equation (3). The Susskind–Glogower phase observable is the typical
example of the generalized observable [80, 81]. To describe the quantum measurement process,
we introduce a superoperatorL̂S(y)

L̂S(y)ÔS = TrA[(ÎS ⊗ ŶA(y))ÛSA(ÔS ⊗ ρ̂Ain)Û†
SA] (A.2)

for any operatorÔS of the physical system. This superoperator satisfies the relations

L̂S(y) > 0
∫
y∈�Y

dν(y)L̂†
S(y) = ÎS (A.3)

where the superoperatorL̂†
S(y) is defined by the relation

TrS{V̂S [L̂S(y)ŴS ]} = TrS{[L̂†
S(y)V̂S ]ŴS} (A.4)

for any operatorsV̂S and ŴS of the physical system. Using the superoperatorL̂S(y), we
can express the probability functionPAout(y) of the measurement outcomes, the conditional
statistical operator̂ρSout(y) of the post-measurement state of the physical system and the
operational observablêZS(y) as follows

PAout(y) = TrS [L̂S(y)ρ̂Sin] (A.5)

ρ̂Sout =
L̂S(y)ρ̂Sin

TrS [L̂S(y)ρ̂Sin]
(A.6)

ẐS(y) = L̂†
S(y)ÎS. (A.7)

To obtain the relation between the information gain and the entropy decrease, we impose the
condition on the quantum measurement process that the superoperatorL̂†

S(y)maps the POVM
X̂S(x) of the intrinsic observable as follows

L̂†
S(y)X̂S(x) = K(y|h(x; y))X̂S(h(x; y)) (A.8)

where the functionsK(y|x) andh(x; y) satisfy the relation∫
x∈�X

dµ(x)K(y|h(x; y))F (h(x; y)) =
∫
x∈�X

dµ(x)K(y|x)F (x) (A.9)

for any non-singular functionF(x). In this case, because of the linearity of the superoperator
L̂S(y), the operational observablêZS(y) is calculated to be

ẐS(y) = L̂†
S ÎS = L̂†

S

∫
x∈�X

dµ(x)X̂S(x)

=
∫
x∈�X

dµ(x)L̂†
SX̂S(x)

=
∫
x∈�X

dµ(x)K(y|h(x; y))X̂S(h(x; y))

=
∫
x∈�X

dµ(x)K(y|x)X̂S(x). (A.10)

This result indicates that the functionK(y|x) represents the conditional probabilityPSA(y|x)
of the quantum measurement process, that is

PAout(y) =
∫
x∈�X

dµ(x)K(y|x)P Sin(x). (A.11)

Therefore, if the relations given by equations (A.8) and (A.9) are satisfied, theorem 1 holds for
the quantum measurement process for the generalized observable. It should be noted here that
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the operational observablêZS(y) does not commute with the intrinsic observableX̂S(x) unless
X̂S(x) is an orthogonal projector. We next calculate the joint probabilityPSAout (x, y) under the
conditions given by equations (A.8) and (A.9)

P SAout (x, y) = PSout(x|y)PAout(y) = TrS [X̂S(x)ρ̂Sout(y)]P
A
out(y)

= TrS [X̂S(x)L̂S(y)ρ̂Sin]

= TrS [ρ̂
S
inL̂

†
S(y)X̂S(x)]

= K(y|h(x; y))TrS [X̂S(h(x; y))ρ̂Sin]

= K(y|h(x; y))P Sin(h(x; y)) (A.12)

which is equivalent to the relation given by equation (78). Therefore, it is easy to see that
theorem 3 holds for the quantum measurement process for the generalized observable that
satisfies the relations given by equations (A.8) and (A.9). We finally note that although
theorem 1 and theorem 3 hold for any quantum non-demolition measurement in the case
that the intrinsic observable is represented by PVM, they are, in general, no longer valid for
quantum non-demolition measurements for generalized observables.
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